A potent hepatotoxic and hepatocarcinogenic mycotoxin produced by the Aspergillus flavus group of fungi. It is also mutagenic, teratogenic, and causes immunosuppression in animals. It is found as a contaminant in peanuts, cottonseed meal, corn, and other grains. The mycotoxin requires epoxidation to aflatoxin B1 2,3-oxide for activation. Microsomal monooxygenases biotransform the toxin to the less toxic metabolites aflatoxin M1 and Q1
Aflatoxins are secondary metabolites of the fungi Aspergillus flavus and A. parasiticus. Among them, aflatoxin B1 (AFB1) is the most frequent type in nature and also, the most carcinogenic for mammals. It can contaminate many kinds of food like seeds, oil, olives, milk, dairy products, corn and meat, causing acute and chronic damages to the organism, especially in the liver, being, for this reason, considered highly hepatotoxic. AFB1 is also a mixed inhibitor of the enzyme acetylcholinesterase (AChE). This fact, together with its high toxicity and carcinogenicity, turns AFB1 into a potential chemical and biological warfare agent, as well as its metabolites. In order to investigate this, we performed inedited molecular modeling studies on the interactions of AFB1 and its metabolites inside the peripheral anionic site (PAS) of human AChE (HssAChE), to verify their stability, suggest the preferential ways of inhibition, and compare their behavior to each other. Our results suggest that all metabolites can be better inhibitors of HssAChE than AFB1 and that AFBO and AFM1, the most toxic and carcinogenic metabolites of AFB1, are also the most effective HssAChE inhibitors among the AFB1 metabolites.
The transient opening of a backdoor in the active-site wall of acetylcholinesterase, one of nature's most rapid enzymes, has been suggested to contribute to the efficient traffic of substrates and products. A crystal structure of Torpedo californica acetylcholinesterase in complex with the peripheral-site inhibitor aflatoxin is now presented, in which a tyrosine at the bottom of the active-site gorge rotates to create a 3.4-A wide exit channel. Molecular dynamics simulations show that the opening can be further enlarged by movement of Trp84. The crystallographic and molecular dynamics simulation data thus point to the interface between Tyr442 and Trp84 as the key element of a backdoor, whose opening permits rapid clearance of catalysis products from the active site. Furthermore, the crystal structure presented provides a novel template for rational design of inhibitors and reactivators, including anti-Alzheimer drugs and antidotes against organophosphate poisoning.