Photoswitchable agonist of the nicotinic acetylcholine receptor developped by Ehrlanger and Lester( trans most active form). BisQ is a poor inhibitor of AChE Ki 3129.3+/-1181.4 nM. Has no photodependent effect on AChE activity
Photochromic ligands have been used to control a variety of biological functions, especially in neural systems. Recently, much effort has been invested in the photocontrol of ion channels and G-protein coupled receptors found in the synapse. Herein, we describe the expansion of our photopharmacological approach toward the remote control of an enzyme. Building on hallmark studies dating from the late 1960s, we evaluated photochromic inhibitors of one of the most important enzymes in synaptic transmission, acetylcholinesterase (AChE). Using structure-based design, we synthesized several azobenzene analogues of the well-known AChE inhibitor tacrine (THA) and determined their effects on enzymatic activity. One of our compounds, AzoTHA, is a reversible photochromic blocker of AChE in vitro and ex vivo with high affinity and fast kinetics. As such, AzoTHA can be used to control synaptic transmission on the neuromuscular endplate based on the light-dependent clearance of a neurotransmitter.
        
Title: Physiological and pharmacological manipulations with light flashes Lester HA, Nerbonne JM Ref: Annu Rev Biophys Bioeng, 11:151, 1982 : PubMed
Two photochromic activators of the electrogenic membrane of the electroplax of Electrophorus electricus are described. Trans-3,3'-bis[alpha-(trimethylammonium)methyl]azobenzene dibromide (Bis-Q), one of the most potent ever reported, is active at concentrations of less than 10(-7) M. Its cis isomer, which is obtained from the trans by exposure to light of 330 nm, is practically devoid of activity. Photoregulation of the potential of the membrane takes place in the presence of Bis-Q, presumably because of the conversion of the active trans isomer to the inactive cis isomer in the single-cell electroplax system. The second activator, 3-(alpha-bromomethyl)-3'-[alpha-(trimethylammonium)methyl]azobenzene bromide (QBr) can be covalently attached to the electroplax membrane after reduction of the membrane with dithiothreitol. Activation of the membrane is induced by the covalently linked reagent. Its cis isomer, obtained from the trans by exposure to light of 330 nm, is, like cis-Bis-Q, of very low activity. Both isomers of Bis-Q are equally active as inhibitors of acetylcholinesterase, 50% inhibition occurring at a concentration of 10(-5) M. The possibility of using trans-Bis-Q and trans-QBr to characterize and isolate the receptor protein is discussed.
Photochromic ligands have been used to control a variety of biological functions, especially in neural systems. Recently, much effort has been invested in the photocontrol of ion channels and G-protein coupled receptors found in the synapse. Herein, we describe the expansion of our photopharmacological approach toward the remote control of an enzyme. Building on hallmark studies dating from the late 1960s, we evaluated photochromic inhibitors of one of the most important enzymes in synaptic transmission, acetylcholinesterase (AChE). Using structure-based design, we synthesized several azobenzene analogues of the well-known AChE inhibitor tacrine (THA) and determined their effects on enzymatic activity. One of our compounds, AzoTHA, is a reversible photochromic blocker of AChE in vitro and ex vivo with high affinity and fast kinetics. As such, AzoTHA can be used to control synaptic transmission on the neuromuscular endplate based on the light-dependent clearance of a neurotransmitter.
        
Title: Physiological and pharmacological manipulations with light flashes Lester HA, Nerbonne JM Ref: Annu Rev Biophys Bioeng, 11:151, 1982 : PubMed
Two photochromic activators of the electrogenic membrane of the electroplax of Electrophorus electricus are described. Trans-3,3'-bis[alpha-(trimethylammonium)methyl]azobenzene dibromide (Bis-Q), one of the most potent ever reported, is active at concentrations of less than 10(-7) M. Its cis isomer, which is obtained from the trans by exposure to light of 330 nm, is practically devoid of activity. Photoregulation of the potential of the membrane takes place in the presence of Bis-Q, presumably because of the conversion of the active trans isomer to the inactive cis isomer in the single-cell electroplax system. The second activator, 3-(alpha-bromomethyl)-3'-[alpha-(trimethylammonium)methyl]azobenzene bromide (QBr) can be covalently attached to the electroplax membrane after reduction of the membrane with dithiothreitol. Activation of the membrane is induced by the covalently linked reagent. Its cis isomer, obtained from the trans by exposure to light of 330 nm, is, like cis-Bis-Q, of very low activity. Both isomers of Bis-Q are equally active as inhibitors of acetylcholinesterase, 50% inhibition occurring at a concentration of 10(-5) M. The possibility of using trans-Bis-Q and trans-QBr to characterize and isolate the receptor protein is discussed.