Nerve agents are chiral organophosphate compounds (OPs) that exert their acute toxicity by phosphorylating the catalytic serine of acetylcholinesterase (AChE). The inhibited cholinesterases can be reactivated using oximes, but a spontaneous time-dependent process called aging alters the adduct, leading to resistance toward oxime reactivation. Human butyrylcholinesterase (BChE) functions as a bioscavenger, protecting the cholinergic system against OPs. The stereoselectivity of BChE is an important parameter for its efficiency at scavenging the most toxic OPs enantiomer for AChE. Crystals of BChE inhibited in solution or in cristallo with racemic V-agents (VX, Russian VX, and Chinese VX) systematically show the formation of the P(S) adduct. In this configuration, no catalysis of aging seems possible as confirmed by the three-dimensional structures of the three conjugates incubated over a period exceeding a week. Crystals of BChE soaked in optically pure VX(R)-(+) and VX(S)-(-) solutions lead to the formation of the P(S) and P(R) adduct, respectively. These structural data support an in-line phosphonylation mechanism. Additionally, they show that BChE reacts with VX(R)-(+) in the presence of racemic mixture of V-agents, at odds with earlier kinetic results showing a moderate higher inhibition rate for VX(S)-(-). These combined results suggest that the simultaneous presence of both enantiomers alters the enzyme stereoselectivity. In summary, the three-dimensional data show that BChE reacts preferentially with P(R) enantiomer of V-agents and does not age, in complete contrast to AChE, which is selectively inhibited by the P(S) enantiomer and ages.
        
Title: Unequal efficacy of pyridinium oximes in acute organophosphate poisoning Antonijevic B, Stojiljkovic MP Ref: Clin Med Res, 5:71, 2007 : PubMed
The use of organophosphorus pesticides results in toxicity risk to non-target organisms. Organophosphorus compounds share a common mode of action, exerting their toxic effects primarily via acetylcholinesterase (AChE) inhibition. Consequently, acetylcholine accumulates in the synaptic clefts of muscles and nerves, leading to overstimulation of cholinergic receptors. Acute cholinergic crisis immediately follows exposure to organophosphate and includes signs and symptoms resulting from hyperstimulation of central and peripheral muscarinic and nicotinic receptors. The current view of the treatment of organophosphate poisoning includes three strategies, i.e. the use of an anticholinergic drug (e.g., atropine), cholinesterase-reactivating agents (e.g., oximes) and anticonvulsant drugs (e.g., benzodiazepines). Oximes, as a part of antidotal therapy, ensure the recovery of phosphylated enzymes via a process denoted as reactivation of inhibited AChE. However, both experimental results and clinical findings have demonstrated that different oximes are not equally effective against poisonings caused by structurally different organophosphorus compounds. Therefore, antidotal characteristics of conventionally used oximes can be evaluated regarding how close the certain substance is to the theoretical concept of the universal oxime. Pralidoxime (PAM-2), trimedoxime (TMB-4), obidoxime (LuH-6), HI-6 and HLo-7 have all been demonstrated to be very effective in experimental poisonings with sarin and VX. TMB-4 and LuH-6 may reactivate tabun-inhibited AChE, whereas HI-6 possesses the ability to reactivate the soman-inhibited enzyme. An oxime HLo-7 seems to be an efficient reactivator of AChE inhibited by any of the four organophosphorus warfare agents. According to the available literature, the oximes LuH-6 and TMB-4, although relatively toxic, are the most potent to induce reactivation of AChE inhibited by the majority of organophosphorus pesticides. Since there are no reports of controlled clinical trials on the use of TMB-4 in human organophosphate pesticide poisoning, LuH-6 may be a better option.
        
Title: Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetylcholinesterase Aurbek N, Thiermann H, Szinicz L, Eyer P, Worek F Ref: Toxicology, 224:91, 2006 : PubMed
Organophosphorus compounds (OP) are in wide spread use as pesticides and highly toxic OP may be used as chemical warfare agents (nerve agents). OP inhibit acetylcholinesterase (AChE), therefore, standard treatment includes AChE reactivators (oximes) in combination with antimuscarinic agents. In the last decades, the efficacy of oximes has been investigated in various animal models, mostly in rodents. However, extrapolating animal data to humans is problematical because of marked differences between rodents and humans concerning the toxicokinetics of nerve agents, the pharmacokinetics of antidotes and the AChE enzyme kinetics. In order to improve the understanding of species differences and to enable a more reliable extrapolation of animal data to humans a study was initiated to investigate the effect of highly toxic nerve agents, i.e. VX, Russian VX (VR) and Chinese VX (CVX), with human and pig erythrocyte AChE. Hereby, the rate constants for the inhibition of AChE by these OP (ki) and for the spontaneous dealkylation (ka) and reactivation (ks) of OP-inhibited AChE as well as for the oxime-induced reactivation of OP-inhibited AChE by the oximes obidoxime, 2-PAM, HI 6, HLo 7 and MMB-4 were determined. Compared to human AChE pig AChE showed a lower sensitivity towards the investigated OP. Furthermore, a slower spontaneous dealkylation and reactivation of pig AChE was recorded. The potency of the investigated oximes was remarkably lower with OP-inhibited pig AChE. These data may contribute to a better understanding of species differences and may provide a kinetic basis for extrapolation of data from pig experiments to humans.
        
1 lessTitle: V-type nerve agents phosphonylate ubiquitin at biologically relevant lysine residues and induce intramolecular cyclization by an isopeptide bond Schmidt C, Breyer F, Blum MM, Thiermann H, Worek F, John H Ref: Anal Bioanal Chem, 406:5171, 2014 : PubMed
Toxic organophosphorus compounds (e.g., pesticides and nerve agents) are known to react with nucleophilic side chains of different amino acids (phosphylation), thus forming adducts with endogenous proteins. Most often binding to serine, tyrosine, or threonine residues is described as being of relevance for toxicological effects (e.g., acetylcholinesterase and neuropathy target esterase) or as biomarkers for post-exposure analysis (verification, e.g., albumin and butyrylcholinesterase). Accordingly, identification of novel protein targets might be beneficial for a better understanding of the toxicology of these compounds, revealing new bioanalytical verification tools, and improving knowledge on chemical reactivity. In the present study, we investigated the reaction of ubiquitin (Ub) with the V-type nerve agents Chinese VX, Russian VX, and VX in vitro. Ub is a ubiquitous protein with a mass of 8564.8 Da present in the extra- and intracellular space that plays an important physiological role in several essential processes (e.g., proteasomal degradation, DNA repair, protein turnover, and endocytosis). Reaction products were analyzed by matrix-assisted laser desorption/ionization-time-of-flight- mass spectrometry (MALDI-TOF MS) and mu-high-performance liquid chromatography online coupled to UV-detection and electrospray ionization MS (muHPLC-UV/ESI MS). Our results originally document that a complex mixture of at least mono-, di, and triphosphonylated Ub adducts was produced. Surprisingly, peptide mass fingerprint analysis in combination with MALDI and ESI MS/MS revealed that phosphonylation occurred with high selectivity in at least 6 of 7 surface-exposed lysine residues that are essential for the biological function of Ub. These reaction products were found not to age. In addition, we herein report for the first time that phosphonylation induced intramolecular cyclization by formation of an isopeptide bond between the epsilon-amino group of a formerly phosphonylated lysine and the side chain of an adjacent acidic glutamic acid residue.
Nerve agents are chiral organophosphate compounds (OPs) that exert their acute toxicity by phosphorylating the catalytic serine of acetylcholinesterase (AChE). The inhibited cholinesterases can be reactivated using oximes, but a spontaneous time-dependent process called aging alters the adduct, leading to resistance toward oxime reactivation. Human butyrylcholinesterase (BChE) functions as a bioscavenger, protecting the cholinergic system against OPs. The stereoselectivity of BChE is an important parameter for its efficiency at scavenging the most toxic OPs enantiomer for AChE. Crystals of BChE inhibited in solution or in cristallo with racemic V-agents (VX, Russian VX, and Chinese VX) systematically show the formation of the P(S) adduct. In this configuration, no catalysis of aging seems possible as confirmed by the three-dimensional structures of the three conjugates incubated over a period exceeding a week. Crystals of BChE soaked in optically pure VX(R)-(+) and VX(S)-(-) solutions lead to the formation of the P(S) and P(R) adduct, respectively. These structural data support an in-line phosphonylation mechanism. Additionally, they show that BChE reacts with VX(R)-(+) in the presence of racemic mixture of V-agents, at odds with earlier kinetic results showing a moderate higher inhibition rate for VX(S)-(-). These combined results suggest that the simultaneous presence of both enantiomers alters the enzyme stereoselectivity. In summary, the three-dimensional data show that BChE reacts preferentially with P(R) enantiomer of V-agents and does not age, in complete contrast to AChE, which is selectively inhibited by the P(S) enantiomer and ages.
        
Title: Unequal efficacy of pyridinium oximes in acute organophosphate poisoning Antonijevic B, Stojiljkovic MP Ref: Clin Med Res, 5:71, 2007 : PubMed
The use of organophosphorus pesticides results in toxicity risk to non-target organisms. Organophosphorus compounds share a common mode of action, exerting their toxic effects primarily via acetylcholinesterase (AChE) inhibition. Consequently, acetylcholine accumulates in the synaptic clefts of muscles and nerves, leading to overstimulation of cholinergic receptors. Acute cholinergic crisis immediately follows exposure to organophosphate and includes signs and symptoms resulting from hyperstimulation of central and peripheral muscarinic and nicotinic receptors. The current view of the treatment of organophosphate poisoning includes three strategies, i.e. the use of an anticholinergic drug (e.g., atropine), cholinesterase-reactivating agents (e.g., oximes) and anticonvulsant drugs (e.g., benzodiazepines). Oximes, as a part of antidotal therapy, ensure the recovery of phosphylated enzymes via a process denoted as reactivation of inhibited AChE. However, both experimental results and clinical findings have demonstrated that different oximes are not equally effective against poisonings caused by structurally different organophosphorus compounds. Therefore, antidotal characteristics of conventionally used oximes can be evaluated regarding how close the certain substance is to the theoretical concept of the universal oxime. Pralidoxime (PAM-2), trimedoxime (TMB-4), obidoxime (LuH-6), HI-6 and HLo-7 have all been demonstrated to be very effective in experimental poisonings with sarin and VX. TMB-4 and LuH-6 may reactivate tabun-inhibited AChE, whereas HI-6 possesses the ability to reactivate the soman-inhibited enzyme. An oxime HLo-7 seems to be an efficient reactivator of AChE inhibited by any of the four organophosphorus warfare agents. According to the available literature, the oximes LuH-6 and TMB-4, although relatively toxic, are the most potent to induce reactivation of AChE inhibited by the majority of organophosphorus pesticides. Since there are no reports of controlled clinical trials on the use of TMB-4 in human organophosphate pesticide poisoning, LuH-6 may be a better option.
        
Title: Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetylcholinesterase Aurbek N, Thiermann H, Szinicz L, Eyer P, Worek F Ref: Toxicology, 224:91, 2006 : PubMed
Organophosphorus compounds (OP) are in wide spread use as pesticides and highly toxic OP may be used as chemical warfare agents (nerve agents). OP inhibit acetylcholinesterase (AChE), therefore, standard treatment includes AChE reactivators (oximes) in combination with antimuscarinic agents. In the last decades, the efficacy of oximes has been investigated in various animal models, mostly in rodents. However, extrapolating animal data to humans is problematical because of marked differences between rodents and humans concerning the toxicokinetics of nerve agents, the pharmacokinetics of antidotes and the AChE enzyme kinetics. In order to improve the understanding of species differences and to enable a more reliable extrapolation of animal data to humans a study was initiated to investigate the effect of highly toxic nerve agents, i.e. VX, Russian VX (VR) and Chinese VX (CVX), with human and pig erythrocyte AChE. Hereby, the rate constants for the inhibition of AChE by these OP (ki) and for the spontaneous dealkylation (ka) and reactivation (ks) of OP-inhibited AChE as well as for the oxime-induced reactivation of OP-inhibited AChE by the oximes obidoxime, 2-PAM, HI 6, HLo 7 and MMB-4 were determined. Compared to human AChE pig AChE showed a lower sensitivity towards the investigated OP. Furthermore, a slower spontaneous dealkylation and reactivation of pig AChE was recorded. The potency of the investigated oximes was remarkably lower with OP-inhibited pig AChE. These data may contribute to a better understanding of species differences and may provide a kinetic basis for extrapolation of data from pig experiments to humans.