Derives from an Oplophorus luciferin. The postcatalytic enzyme-product. The most common marine luciferin. Luciferase from Renilla reniformis (RLuc) catalyzes the degradation of coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light (EC 1.13.12.5). This enzyme belongs to the Haloalkane dehalogenase family II with a different catalytic function (EC 3.8.1.5) Reconstruction of an ancestral enzyme shows it has both hydrolase and monooxygenase activities ( Chaloupkova et al.)
Insertion-deletion mutations are sources of major functional innovations in naturally evolved proteins, but directed evolution methods rely primarily on substitutions. Here, we report a powerful strategy for engineering backbone dynamics based on InDel mutagenesis of a stable and evolvable template, and its validation in application to a thermostable ancestor of haloalkane dehalogenase and Renilla luciferase. First, extensive multidisciplinary analysis linked the conformational flexibility of a loop-helix fragment to binding of the bulky substrate coelenterazine. The fragment's key role in extant Renilla luciferase was confirmed by transplanting it into the ancestor. This increased its catalytic efficiency 7,000-fold, and fragment-containing mutants showed highly stable glow-type bioluminescence with 100-fold longer half-lives than the flash-type Renilla luciferase RLuc8, thereby addressing a limitation of a popular molecular probe. Thus, our three-step approach: (i) constructing a robust template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of a dynamic feature, provides a potent strategy for discovering protein modifications with globally disruptive but functionally innovative effects.
        
Title: Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis Loening AM, Fenn TD, Gambhir SS Ref: Journal of Molecular Biology, 374:1017, 2007 : PubMed
Due to its ability to emit light, the luciferase from Renilla reniformis (RLuc) is widely employed in molecular biology as a reporter gene in cell culture experiments and small animal imaging. To accomplish this bioluminescence, the 37-kDa enzyme catalyzes the degradation of its substrate coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light. We successfully crystallized a stabilized variant of this important protein (RLuc8) and herein present the first structures for any coelenterazine-using luciferase. These structures are based on high-resolution data measured to 1.4 A and demonstrate a classic alpha/beta-hydrolase fold. We also present data of a coelenteramide-bound luciferase and reason that this structure represents a secondary conformational form following shift of the product out of the primary active site. During the course of this work, the structure of the luciferase's accessory green fluorescent protein (RrGFP) was also determined and shown to be highly similar to that of Aequorea victoria GFP.