Non-selective lipid-like serine hydrolase inhibitor. This hydrophobic mechanism-based covalent inhibitor targets approximately 20 serine hydrolases characterized by their common preference for lipid-like substrates, including APT1 and APT2, but not LYPLAL1. Used in activity based profiling (inhibits more than 75% activity of ABHD10 DPP8 LIPE ABHD6 ABHD16A FASN AADAC ABHD17A,B,C LYPLA2 LYPLA1 PAFAH2 PGAP1 PPT1 (+PNPLA6 PNPLA7 PNPLA8 not alpha hydrolases but Patatin)
S-palmitoylation is required for membrane anchoring, proper trafficking, and the normal function of hundreds of integral and peripheral membrane proteins. Previous bioorthogonal pulse-chase proteomics analyses identified Ras family GTPases, polarity proteins, and G proteins as rapidly cycling S-palmitoylated proteins sensitive to depalmitoylase inhibition, yet the breadth of enzyme regulated dynamic S-palmitoylation largely remains a mystery. Here, we present a pulsed bioorthogonal S-palmitoylation assay for temporal analysis of S-palmitoylation dynamics. Low concentration hexadecylfluorophosphonate (HDFP) inactivates the APT and ABHD17 families of depalmitoylases, which dramatically increases alkynyl-fatty acid labeling and stratifies S-palmitoylated proteins into kinetically distinct subgroups. Most surprisingly, HDFP treatment does not affect steady-state S-palmitoylation levels, despite inhibiting all validated depalmitoylating enzymes. S-palmitoylation profiling of APT1(-/-)/APT2(-/-) mouse brains similarly show no change in S-palmitoylation levels. In comparison with hydroxylamine-switch methods, bioorthogonal alkynyl fatty acids are only incorporated into a small fraction of dynamic S-palmitoylated proteins, raising the possibility that S-palmitoylation is more stable than generally characterized. Overall, disrupting depalmitoylase activity enhances alkynyl fatty acid incorporation, but does not greatly affect steady state S-palmitoylation across the proteome.
Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K(+) (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.
Methylarachidonylfluorophosphonate (MAFP) and related analogs have been shown to inhibit fatty acid amidohydrolase activity (FAAH), the enzyme responsible for hydrolysis of the endogenous cannabinoid ligand anandamide. To fully characterize this class of compounds, methylfluorophosphonate compounds with saturated alkyl chains ranging from C8 to C20 along with C20 unsaturated derivatives were synthesized and evaluated for their ability to interact with the CB1 receptor, inhibit FAAH, and produce in vivo pharmacological effects. These analogs demonstrated widely varying affinities for the CB1 receptor. Of the saturated compounds, C8:0 was incapable of displacing [(3)H]CP 55,940 binding, whereas C12:0 exhibited high affinity (2.5 nM). The C20:0 saturated analog had low affinity (900 nM), but the introduction of unsaturation into the C20 analogs restored receptor affinity. However, none of the analogs were capable of fully displacing [(3)H]CP 55,940 binding. On the other hand, all compounds were able to completely inhibit FAAH enzyme activity, with the C20:0 analog being the least potent. The most potent FAAH inhibitor was the short-chained saturated C12:0, whereas the other analogs were 15- to 30-fold less potent. In vivo, the C8:0 and C12:0 analogs were highly potent and fully efficacious in producing tetrahydrocannabinol (THC)-like effects, whereas the other analogs were either inactive or acted as partial agonists. None was capable of attenuating the agonist effects of THC. Conversely, the C20:0 analog potentiated the effects of anandamide but not those of 2-arachidonoyl-glycerol and THC. The high in vivo potency of the novel short-chain saturated MAFP derivatives (C8:0 and C12:0) underscores the complexity of manipulating the endogenous cannabinoid system.
Deficiency of the serine hydrolase prolyl endopeptidase-like (PREPL) causes a recessive metabolic disorder characterized by neonatal hypotonia, feeding difficulties, and growth hormone deficiency. The pathophysiology of PREPL deficiency and the physiological substrates of PREPL remain largely unknown. In this study, we connect PREPL with mitochondrial gene expression and oxidative phosphorylation by analyzing its protein interactors. We demonstrate that the long PREPL(L) isoform localizes to mitochondria, whereas PREPL(S) remains cytosolic. Prepl KO mice showed reduced mitochondrial complex activities and disrupted mitochondrial gene expression. Furthermore, mitochondrial ultrastructure was abnormal in a PREPL-deficient patient and Prepl KO mice. In addition, we reveal that PREPL has (thio)esterase activity and inhibition of PREPL by Palmostatin M suggests a depalmitoylating function. We subsequently determined the crystal structure of PREPL, thereby providing insight into the mechanism of action. Taken together, PREPL is a (thio)esterase rather than a peptidase and PREPL(L) is involved in mitochondrial homeostasis.
        
Title: Temporal Profiling Establishes a Dynamic S-Palmitoylation Cycle Won SJ, Martin BR Ref: ACS Chemical Biology, 13:1560, 2018 : PubMed
S-palmitoylation is required for membrane anchoring, proper trafficking, and the normal function of hundreds of integral and peripheral membrane proteins. Previous bioorthogonal pulse-chase proteomics analyses identified Ras family GTPases, polarity proteins, and G proteins as rapidly cycling S-palmitoylated proteins sensitive to depalmitoylase inhibition, yet the breadth of enzyme regulated dynamic S-palmitoylation largely remains a mystery. Here, we present a pulsed bioorthogonal S-palmitoylation assay for temporal analysis of S-palmitoylation dynamics. Low concentration hexadecylfluorophosphonate (HDFP) inactivates the APT and ABHD17 families of depalmitoylases, which dramatically increases alkynyl-fatty acid labeling and stratifies S-palmitoylated proteins into kinetically distinct subgroups. Most surprisingly, HDFP treatment does not affect steady-state S-palmitoylation levels, despite inhibiting all validated depalmitoylating enzymes. S-palmitoylation profiling of APT1(-/-)/APT2(-/-) mouse brains similarly show no change in S-palmitoylation levels. In comparison with hydroxylamine-switch methods, bioorthogonal alkynyl fatty acids are only incorporated into a small fraction of dynamic S-palmitoylated proteins, raising the possibility that S-palmitoylation is more stable than generally characterized. Overall, disrupting depalmitoylase activity enhances alkynyl fatty acid incorporation, but does not greatly affect steady state S-palmitoylation across the proteome.
        
Title: ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization Lin DT, Conibear E Ref: Elife, 4:, 2015 : PubMed
Dynamic changes in protein S-palmitoylation are critical for regulating protein localization and signaling. Only two enzymes - the acyl-protein thioesterases APT1 and APT2 - are known to catalyze palmitate removal from cytosolic cysteine residues. It is unclear if these enzymes act constitutively on all palmitoylated proteins, or if additional depalmitoylases exist. Using a dual pulse-chase strategy comparing palmitate and protein half-lives, we found knockdown or inhibition of APT1 and APT2 blocked depalmitoylation of Huntingtin, but did not affect palmitate turnover on postsynaptic density protein 95 (PSD95) or N-Ras. We used activity profiling to identify novel serine hydrolase targets of the APT1/2 inhibitor Palmostatin B, and discovered that a family of uncharacterized ABHD17 proteins can accelerate palmitate turnover on PSD95 and N-Ras. ABHD17 catalytic activity is required for N-Ras depalmitoylation and re-localization to internal cellular membranes. Our findings indicate that the family of depalmitoylation enzymes may be substantially broader than previously believed.
Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K(+) (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.
The reversible thioester linkage of palmitic acid on cysteines, known as protein S-palmitoylation, facilitates the membrane association and proper subcellular localization of proteins. Here we report the metabolic incorporation of the palmitic acid analog 17-octadecynoic acid (17-ODYA) in combination with stable-isotope labeling with amino acids in cell culture (SILAC) and pulse-chase methods to generate a global quantitative map of dynamic protein palmitoylation events in cells. We distinguished stably palmitoylated proteins from those that turn over rapidly. Treatment with a serine lipase-selective inhibitor identified a pool of dynamically palmitoylated proteins regulated by palmitoyl-protein thioesterases. This subset was enriched in oncoproteins and other proteins linked to aberrant cell growth, migration and cancer. Our method provides a straightforward way to characterize global palmitoylation dynamics in cells and confirms enzyme-mediated depalmitoylation as a critical regulatory mechanism for a specific subset of rapidly cycling palmitoylated proteins.
Methylarachidonylfluorophosphonate (MAFP) and related analogs have been shown to inhibit fatty acid amidohydrolase activity (FAAH), the enzyme responsible for hydrolysis of the endogenous cannabinoid ligand anandamide. To fully characterize this class of compounds, methylfluorophosphonate compounds with saturated alkyl chains ranging from C8 to C20 along with C20 unsaturated derivatives were synthesized and evaluated for their ability to interact with the CB1 receptor, inhibit FAAH, and produce in vivo pharmacological effects. These analogs demonstrated widely varying affinities for the CB1 receptor. Of the saturated compounds, C8:0 was incapable of displacing [(3)H]CP 55,940 binding, whereas C12:0 exhibited high affinity (2.5 nM). The C20:0 saturated analog had low affinity (900 nM), but the introduction of unsaturation into the C20 analogs restored receptor affinity. However, none of the analogs were capable of fully displacing [(3)H]CP 55,940 binding. On the other hand, all compounds were able to completely inhibit FAAH enzyme activity, with the C20:0 analog being the least potent. The most potent FAAH inhibitor was the short-chained saturated C12:0, whereas the other analogs were 15- to 30-fold less potent. In vivo, the C8:0 and C12:0 analogs were highly potent and fully efficacious in producing tetrahydrocannabinol (THC)-like effects, whereas the other analogs were either inactive or acted as partial agonists. None was capable of attenuating the agonist effects of THC. Conversely, the C20:0 analog potentiated the effects of anandamide but not those of 2-arachidonoyl-glycerol and THC. The high in vivo potency of the novel short-chain saturated MAFP derivatives (C8:0 and C12:0) underscores the complexity of manipulating the endogenous cannabinoid system.