Impurity in malathion extremely toxic for mammals Results from isomerization of phosphorothionate to phosphorothiolate. It gains a chiral center and has four stereoisomers which show stereoselective action against cholinesterase position of sulfure and oxygene inverse of malathion
Inhibition of acetylcholinesterase (AChE) by isomalathion has been assumed to proceed by expulsion of diethyl thiosuccinyl to produce O, S-dimethyl phosphorylated AChE. If this assumption is correct, AChE inhibited by (1R)- or (1S)-isomalathions should reactivate at the same rate as AChE inhibited by configurationally equivalent (S)- or (R)-isoparathion methyl, respectively, which are expected to inhibit AChE by loss of 4-nitrophenoxyl to yield O,S-dimethyl phosphorylated AChEs. Previous work has shown that rat brain AChE inhibited by (1R)-isomalathions reactivates at the same rate as the enzyme inhibited by (S)-isoparathion methyl. However, although rat brain AChE inhibited by (R)-isoparathion methyl reactivates at a measurable rate, the enzyme inhibited by (1S)-isomalathions is intractable to reactivation. This surprising finding suggests the hypothesis that (1R)- and (1S)-stereoisomers of isomalathion inhibit AChE by different mechanisms, yielding enzymatic species distinguishable by their postinhibitory kinetics. The present study was carried out to test this hypothesis by comparing kinetic constants of reactivation (k+3) and aging (k+4) of hen brain AChE and bovine erythrocyte AChE inhibited by the four stereoisomers of isomalathion and the two stereoisomers of isoparathion methyl. Both AChEs inhibited by either (1R,3R)- or (1R,3S)-isomalathion had comparable corresponding k+3 values (spontaneous and oxime-mediated) to those of AChEs inhibited with (S)-isoparathion methyl. However, spontaneous and oxime-mediated k+3 values comparable to those of (R)-isoparathion methyl could not be obtained for AChEs inhibited by (1S,3R)- and (1S,3S)-isomalathion. Comparison of k+4 values for hen brain AChE inhibited by each stereoisomer of isomalathion and isoparathion methyl corroborated that only the (1S)-isomalathions failed to produce the expected O,S-dimethyl phosphoryl-conjugated enzymes. The results for (1R)-isomalathions suggest that the mechanism of inhibition of AChE by these isomers is the expected one involving diethyl thiosuccinyl as the primary leaving group. In contrast, the results for (1S)-isomalathions are consistent with an alternative mechanism of inhibition by these isomers implicating loss of thiomethyl as the primary leaving group.
During a malaria eradication programme in Pakistan in 1976, out of 7,500 spraymen, 2,800 became poisoned and 5 died. The major determinant of this poisoning has been identified as isomalathion present as an impurity in the malathion. It seems almost certain that the isomalathion was produced during storage of the formulated malathion. The quantitative correlation found between isomalathion content and toxicity of many field samples of malathion has been confirmed by an examination of mixtures of pure compounds. Addition of known amounts of isomalathion to technical malathion indicates that other active substances are present. These impurities have been identified (trimethyl phosphorothioates) and have been shown to behave like isomalathion in potentiating the toxicity of malathion. Some preliminary work on their toxicological properties is reported. The mechanisms involved in the potentiation of the toxicity of malathion are discussed.
Inhibition of acetylcholinesterase (AChE) by isomalathion has been assumed to proceed by expulsion of diethyl thiosuccinyl to produce O, S-dimethyl phosphorylated AChE. If this assumption is correct, AChE inhibited by (1R)- or (1S)-isomalathions should reactivate at the same rate as AChE inhibited by configurationally equivalent (S)- or (R)-isoparathion methyl, respectively, which are expected to inhibit AChE by loss of 4-nitrophenoxyl to yield O,S-dimethyl phosphorylated AChEs. Previous work has shown that rat brain AChE inhibited by (1R)-isomalathions reactivates at the same rate as the enzyme inhibited by (S)-isoparathion methyl. However, although rat brain AChE inhibited by (R)-isoparathion methyl reactivates at a measurable rate, the enzyme inhibited by (1S)-isomalathions is intractable to reactivation. This surprising finding suggests the hypothesis that (1R)- and (1S)-stereoisomers of isomalathion inhibit AChE by different mechanisms, yielding enzymatic species distinguishable by their postinhibitory kinetics. The present study was carried out to test this hypothesis by comparing kinetic constants of reactivation (k+3) and aging (k+4) of hen brain AChE and bovine erythrocyte AChE inhibited by the four stereoisomers of isomalathion and the two stereoisomers of isoparathion methyl. Both AChEs inhibited by either (1R,3R)- or (1R,3S)-isomalathion had comparable corresponding k+3 values (spontaneous and oxime-mediated) to those of AChEs inhibited with (S)-isoparathion methyl. However, spontaneous and oxime-mediated k+3 values comparable to those of (R)-isoparathion methyl could not be obtained for AChEs inhibited by (1S,3R)- and (1S,3S)-isomalathion. Comparison of k+4 values for hen brain AChE inhibited by each stereoisomer of isomalathion and isoparathion methyl corroborated that only the (1S)-isomalathions failed to produce the expected O,S-dimethyl phosphoryl-conjugated enzymes. The results for (1R)-isomalathions suggest that the mechanism of inhibition of AChE by these isomers is the expected one involving diethyl thiosuccinyl as the primary leaving group. In contrast, the results for (1S)-isomalathions are consistent with an alternative mechanism of inhibition by these isomers implicating loss of thiomethyl as the primary leaving group.
        
Title: Synthesis and 31P chemical shift identification of tripeptide active site models that represent human serum acetylcholinesterase covalently modified at serine by certain organophosphates Thompson CM, Suarez AI, Rodriguez OP Ref: Chemical Research in Toxicology, 9:1325, 1996 : PubMed
Most organophosphorus (OP) insecticides impart their toxic action via inhibition of cholinesterases by reacting at an essential serine hydroxyl group. The inhibition process is dependent upon the reactivity, stereochemistry, leaving group, and the mechanism of phosphorylation and/or reactivation (or aging) inherent to the OP compound under consideration. Because a wide array of phosphorylated structures are possible following inhibition by an OP, a simple model system was sought to investigate the mechanistic details of these and related reactions. In the present study, the tripeptide N-CBZ-Glu-Ser(OH)-Ala-OEt (chosen as a truncated form of human serum cholinesterase) was chemically modified at the serine hydroxyl group by various O-methyl phosphate groups and the 31P NMR chemical shift recorded. Six tripeptides, representing (a) phosphorylation by dimethyl phosphorothionates (N-CBZ-Glu-Ser[O-P(S)(OMe)2]Ala-OEt; 5), (b) phosphorylation by dimethyl phosphates (N-CBZ-Glu-Ser[O-P(O)(OMe)2] Ala-Oet; 6), (c) phosphorylation by O,S-dimethyl phosphorothiolates (N-CBZ-Glu-Ser[O-P(O)(OMe)(SMe)]Ala-OEt; 7), (d) aging following inhibition by dimethyl phosphorothionates (N-CBZ-Glu-Ser[O-P(O)(OMe)(S-)]Ala-OEt; 8), (e) aging following inhibition by dimethyl phosphates (N-CBZ-Glu-Ser[O-P(O)(OMe)(O-)]Ala-OEt; 9), and (f) phosphorylation by R/S)PSc-isomalathion stereoisomers (N-CBZ-Glu-Ser[O-P(O)(OMe)(SCH(CO2CO2Et)CH2-CO2Et)]Ala-OEt; 10) have been synthesized. Tripeptides 5 and 6 were prepared via preliminary formation of an intermediate tripeptide phosphite followed by direct conversion to 5 using S8 or to 6 with m-CPBA, respectively. Tripeptides 8 and 9 were prepared by dealkylation of 5 and 6, respectively. Tripeptides 7 and 10 were prepared by reaction of 8 with dimethyl sulfate and (R)- or (S)-diethyl (trifluoromethanesulfonyl)malate, respectively.
        
Title: Synthesis, absolute configuration, and analysis of malathion, malaoxon, and isomalathion enantiomers [published erratum appears in Chem Res Toxicol 1994 Mar-Apr;7(2):275] Berkman CE, Thompson CM, Perrin SR Ref: Chemical Research in Toxicology, 6:718, 1993 : PubMed
Syntheses of the enantiomers of malathion, malaoxon, and isomalathion are reported herein. Malathion enantiomers were prepared from (R)- or (S)-malic acid in three steps. Enantiomers of malathion were converted to the corresponding enantiomers of malaoxon in 52% yield by oxidation with monoperoxyphthalic acid, magnesium salt. The four isomalathion stereoisomers were prepared via two independent pathways using strychnine to resolve the asymmetric phosphorus moiety. The absolute configurations of the four stereoisomers of isomalathion were determined by X-ray crystallographic analysis of an alkaloid salt precursor. A high-performance liquid chromatography technique was developed to resolve the four stereoisomers of isomalathion, and to determine their stereoisomeric ratios.
        
Title: An enzyme test for determining isomalathion impurities in water-dispersible powders of malathion Reiner E, Radic Z Ref: Bulletin of the World Health Organization, 64:397, 1986 : PubMed
An enzyme test for determining isomalathion (O,S-dimethyl-S-(1,2-dicarbethoxyethyl) phosphorodithioate) impurities in water-dispersible powders of malathion (WDP malathion) is described. The test is based on inhibition of acetylcholinesterase (EC 3.1.1.7) by isomalathion extracted from WDP malathion. The lower limit of detection of the test is 0.01% (w/w) isomalathion. For 18 samples of WDP malathion there was good correlation between the levels of isomalathion found using the enzyme test and those obtained by thin-layer chromatography.
        
Title: Mutagenic and alkylating activities of organophosphate impurities of commercial malathion Imamura T, Talcott RE Ref: Mutat Res, 155:1, 1985 : PubMed
The purpose of this study was to determine if 4 major organophosphate impurities of malathion were active as alkylators of nitrobenzylpyridine (NBP) or as mutagens in the Salmonella typhimurium bioassay. Malathion, isomalathion, O,O,O-trimethyl phosphorothioate, O,O,S-trimethyl phosphorothioate, and O,S,S-trimethyl phosphorodithioate produced alkylated NBP at varying rates. In order of increasing NBP reactivity, the compounds ranked: O,O,O-trimethyl phosphorothioate = O,O,S-trimethyl phosphorothioate less than O,S,S-trimethyl phosphorodithioate less than isomalathion = malathion. At 37 degrees C, the most reactive compounds produced an NBP alkylation rate equal to approximately 25% of the rate produced by methyl methanesulfonate, a potent Salmonella mutagen. However, none of the organophosphates were mutagenic in S. typhimurium TA97, TA98 and TA100 when tested by the standard plate-incorporation method or by the preincubation modification of the plate-incorporation method. The possible relationships between NBP reactivity and the biological activities of these organophosphates are discussed.
        
Title: Toxicological properties of trialkyl phosphorothioate and dialkyl alkyl- and arylphosphonothioate esters Fukuto TR Ref: J Environ Sci Health B, 18:89, 1983 : PubMed
Impurities such as O,S,S-trimethyl phosphorodithioate (TMPD) and the S-methyl isomer of malathion (isomalathion) strongly potentiated the mammalian toxicity of malathion. In contrast, impurities present in the phosphoramidothioate insecticide acephate had an antagonizing effect on its mammalian toxicity. The potentiation of the toxicity of malathion was attributed to inhibition of mammalian liver and serum carboxylesterase. O,O,S-Trimethyl phosphorothioate (TMP), another impurity present in technical malathion and in other organophosphorus insecticides, proved to be highly toxic. Rats given a single oral dose of TMP at a level as low as 20 mg/kg died over a period of three weeks, with death occurring with non-cholinergic signs of poisoning. TMPD also caused similar delayed death in rats. O,O,O-Trimethyl phosphorothioate (TMP=S), also another impurity in technical malathion and a structural isomer of TMP, was a potent antagonist to the delayed toxicity of TMP. Examination of a number of related trialkyl phosphorothioate and dialkyl alkylphosphonothioate esters revealed several of these compounds to be highly toxic to rats.
During a malaria eradication programme in Pakistan in 1976, out of 7,500 spraymen, 2,800 became poisoned and 5 died. The major determinant of this poisoning has been identified as isomalathion present as an impurity in the malathion. It seems almost certain that the isomalathion was produced during storage of the formulated malathion. The quantitative correlation found between isomalathion content and toxicity of many field samples of malathion has been confirmed by an examination of mixtures of pure compounds. Addition of known amounts of isomalathion to technical malathion indicates that other active substances are present. These impurities have been identified (trimethyl phosphorothioates) and have been shown to behave like isomalathion in potentiating the toxicity of malathion. Some preliminary work on their toxicological properties is reported. The mechanisms involved in the potentiation of the toxicity of malathion are discussed.