Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, alpha/beta-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors.
        
Title: Development and optimization of piperidyl-1,2,3-triazole ureas as selective chemical probes of endocannabinoid biosynthesis Hsu KL, Tsuboi K, Whitby LR, Speers AE, Pugh H, Inloes J, Cravatt BF Ref: Journal of Medicinal Chemistry, 56:8257, 2013 : PubMed
We have previously shown that 1,2,3-triazole ureas (1,2,3-TUs) act as versatile class of irreversible serine hydrolase inhibitors that can be tuned to create selective probes for diverse members of this large enzyme class, including diacylglycerol lipase-beta (DAGLbeta), a principal biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). Here, we provide a detailed account of the discovery, synthesis, and structure-activity relationship (SAR) of (2-substituted)-piperidyl-1,2,3-TUs that selectively inactivate DAGLbeta in living systems. Key to success was the use of activity-based protein profiling (ABPP) with broad-spectrum and tailored activity-based probes to guide our medicinal chemistry efforts. We also describe an expanded repertoire of DAGL-tailored activity-based probes that includes biotinylated and alkyne agents for enzyme enrichment coupled with mass spectrometry-based proteomics and assessment of proteome-wide selectivity. Our findings highlight the broad utility of 1,2,3-TUs for serine hydrolase inhibitor development and their application to create selective probes of endocannabinoid biosynthetic pathways.
The endocannabinoid 2-arachidonoylglycerol (2-AG) is biosynthesized by diacylglycerol lipases DAGLalpha and DAGLbeta. Chemical probes to perturb DAGLs are needed to characterize endocannabinoid function in biological processes. Here we report a series of 1,2,3-triazole urea inhibitors, along with paired negative-control and activity-based probes, for the functional analysis of DAGLbeta in living systems. Optimized inhibitors showed high selectivity for DAGLbeta over other serine hydrolases, including DAGLalpha ( approximately 60-fold selectivity), and the limited off-targets, such as ABHD6, were also inhibited by the negative-control probe. Using these agents and Daglb(-/-) mice, we show that DAGLbeta inactivation lowers 2-AG, as well as arachidonic acid and eicosanoids, in mouse peritoneal macrophages in a manner that is distinct and complementary to disruption of cytosolic phospholipase-A2. We observed a corresponding reduction in lipopolysaccharide-induced tumor necrosis factor-alpha release. These findings indicate that DAGLbeta is a key metabolic hub within a lipid network that regulates proinflammatory responses in macrophages.
Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, alpha/beta-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors.
        
Title: Development and optimization of piperidyl-1,2,3-triazole ureas as selective chemical probes of endocannabinoid biosynthesis Hsu KL, Tsuboi K, Whitby LR, Speers AE, Pugh H, Inloes J, Cravatt BF Ref: Journal of Medicinal Chemistry, 56:8257, 2013 : PubMed
We have previously shown that 1,2,3-triazole ureas (1,2,3-TUs) act as versatile class of irreversible serine hydrolase inhibitors that can be tuned to create selective probes for diverse members of this large enzyme class, including diacylglycerol lipase-beta (DAGLbeta), a principal biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). Here, we provide a detailed account of the discovery, synthesis, and structure-activity relationship (SAR) of (2-substituted)-piperidyl-1,2,3-TUs that selectively inactivate DAGLbeta in living systems. Key to success was the use of activity-based protein profiling (ABPP) with broad-spectrum and tailored activity-based probes to guide our medicinal chemistry efforts. We also describe an expanded repertoire of DAGL-tailored activity-based probes that includes biotinylated and alkyne agents for enzyme enrichment coupled with mass spectrometry-based proteomics and assessment of proteome-wide selectivity. Our findings highlight the broad utility of 1,2,3-TUs for serine hydrolase inhibitor development and their application to create selective probes of endocannabinoid biosynthetic pathways.
The endocannabinoid 2-arachidonoylglycerol (2-AG) is biosynthesized by diacylglycerol lipases DAGLalpha and DAGLbeta. Chemical probes to perturb DAGLs are needed to characterize endocannabinoid function in biological processes. Here we report a series of 1,2,3-triazole urea inhibitors, along with paired negative-control and activity-based probes, for the functional analysis of DAGLbeta in living systems. Optimized inhibitors showed high selectivity for DAGLbeta over other serine hydrolases, including DAGLalpha ( approximately 60-fold selectivity), and the limited off-targets, such as ABHD6, were also inhibited by the negative-control probe. Using these agents and Daglb(-/-) mice, we show that DAGLbeta inactivation lowers 2-AG, as well as arachidonic acid and eicosanoids, in mouse peritoneal macrophages in a manner that is distinct and complementary to disruption of cytosolic phospholipase-A2. We observed a corresponding reduction in lipopolysaccharide-induced tumor necrosis factor-alpha release. These findings indicate that DAGLbeta is a key metabolic hub within a lipid network that regulates proinflammatory responses in macrophages.
Endocannabinoids (ECs) are a unique group of lipids that function as chemical messengers in the nervous system. The two principle ECs thus far identified in mammals are N-arachidonoyl-ethanolamine (anandamide) and 2-arachidonoyl-glycerol (2-AG). These compounds have been implicated in various physiological and pathological functions including appetite, pain, sensation, memory, and addiction. Because ECs are synthesized and released on demand and then rapidly degraded to terminate signaling, the metabolic pathways that govern EC turnover directly influence the magnitude and duration of neuronal signaling events. There is strong evidence that two serine hydrolases, diacylglycerol lipase-alpha and -beta (DAGL-alpha and -beta) function as 2-AG synthetic enzymes both in vitro and in vivo. However, because constitutive gene disruption, the only currently available means to investigate DAGL-alpha/beta biology due to a lack of selective chemical inhibitors, can result in compensatory effects and network-wide changes, there is still uncertainty surrounding the extent to which DAGL-alpha/beta contribute to 2-AG-mediated signaling. In an effort to provide chemical tools for manipulation of DAGL-beta activity, we initiated a competitive activity-based protein profiling (ABPP) screen of triazole urea compounds to identify selective enzyme inhibitors. This campaign, made possible by previous inhibitor development efforts for LYPLA1/2 (ML211), PAFAH2 (ML225), and ABHD11 (ML226) based on the triazole urea scaffold, yielded the medchem optimized probe ML294 (SID 125269120). ML294 is highly potent against its target enzyme (IC50 = 56 nM in vitro; 12 nM in situ), and is active in vivo, showing both oral bioavailability and blood-brain barrier penetration. Out of more than 20 serine hydrolases (SHs) profiled by gel-based competitive ABPP, ML294 is observed to have one anti-target, alpha/beta hydrolase domain-containing protein 6 (ABHD6). Otherwise, ML294 is at least 35-fold selective for all other brain SHs (approximately 20) assessed by gel-based competitive ABPP and 7-fold selective vs. its closest homolog, DAGL-alpha. To control for ABHD6-directed activity in biological studies, we also developed a structurally related ABHD6-selective control "anti-probe", ML295, also based on the triazole urea scaffold. The complete properties, characterization, and synthesis of ML294 are detailed in this report, and full details of ABHD6 inhibitors are detailed in the Probe Report for ML295 and ML296.