Title: Phenylboronic acid--a potent inhibitor of lipase from Oryza sativa Raghavendra MP, Prakash V Ref: Journal of Agricultural and Food Chemistry, 50:6037, 2002 : PubMed
The kinetics of inhibition of rice bran lipase (RBL) by phenylboronic acid (PBA) was studied to elucidate the nature of inhibition and the effect of the inhibitor on the structure-function of RBL. The effectiveness of an inhibitor is normally expressed by the constant K(i), which is calculated from the Lineweaver-Burk plot and found to be 1.7 mM at pH 7.4. The kinetics of inhibition by PBA was competitive, indicating the presence of serine in the active site of the enzyme. The loss of activity of RBL was concentration dependent on the inhibitor (PBA), and the inactivation followed a pseudo-first-order kinetics. Fluorescence emission measurements indicated a decrease in the fluorescence emission intensity and a red shift in the emission maximum as the inhibitor concentration was increased. The inhibition of the enzyme by PBA was also confirmed by thermal denaturation measurements, which indicated a shift in the thermal denaturation temperature of the enzyme toward lower temperatures. The far-UV-CD data suggest that there were no significant changes in the conformation of the enzyme as a result of binding of PBA. These results indicate that PBA is a potential inhibitor of RBL and binds to the enzyme in bringing about inhibition without any structural alterations.
        
Title: Inhibition of human milk bile-salt-dependent lipase by boronic acids. Implication to the bile salts activator effect Abouakil N, Lombardo D Ref: Biochimica & Biophysica Acta, 1004:215, 1989 : PubMed
The bile-salt-dependent lipase from human milk, which catalyzes the hydrolysis of the water-soluble substrate 4-nitrophenyl acetate and the water-insoluble substrate tributyrin, is competitively inhibited by phenyl boronic acid. This inhibitor does not interfere with the interaction of lipase either with the siliconized glass beads/water interface or with the activator bile-salt binding site. The boronic acid binds near or at the active site serine, since modification of this residue by diisopropylphosphofluoridate (DFP) was prevented by phenyl boronic acid. Phenyl boronic acid binds 15-fold as tightly to bile-salt-dependent lipase as does 4-nitrophenyl acetate. Therefore, phenyl boronic acid bears analogy to a substrate rather than to a tetrahedral intermediate analog. Bile salts such as sodium taurocholate which are non-essential activators for the milk lipase activity on water-soluble substrates decrease the Km as well as the enzyme inhibitor dissociation constant (Ki). They have a slight effect on kcat. These results are interpreted in terms of an increase of the stability of the enzyme-substrate tetrahedral intermediate and in general of any transition states for the formation and for the decomposition of these intermediates upon the enzyme bile salts interaction.
Title: Phenylboronic acid--a potent inhibitor of lipase from Oryza sativa Raghavendra MP, Prakash V Ref: Journal of Agricultural and Food Chemistry, 50:6037, 2002 : PubMed
The kinetics of inhibition of rice bran lipase (RBL) by phenylboronic acid (PBA) was studied to elucidate the nature of inhibition and the effect of the inhibitor on the structure-function of RBL. The effectiveness of an inhibitor is normally expressed by the constant K(i), which is calculated from the Lineweaver-Burk plot and found to be 1.7 mM at pH 7.4. The kinetics of inhibition by PBA was competitive, indicating the presence of serine in the active site of the enzyme. The loss of activity of RBL was concentration dependent on the inhibitor (PBA), and the inactivation followed a pseudo-first-order kinetics. Fluorescence emission measurements indicated a decrease in the fluorescence emission intensity and a red shift in the emission maximum as the inhibitor concentration was increased. The inhibition of the enzyme by PBA was also confirmed by thermal denaturation measurements, which indicated a shift in the thermal denaturation temperature of the enzyme toward lower temperatures. The far-UV-CD data suggest that there were no significant changes in the conformation of the enzyme as a result of binding of PBA. These results indicate that PBA is a potential inhibitor of RBL and binds to the enzyme in bringing about inhibition without any structural alterations.
        
Title: Inhibition of human milk bile-salt-dependent lipase by boronic acids. Implication to the bile salts activator effect Abouakil N, Lombardo D Ref: Biochimica & Biophysica Acta, 1004:215, 1989 : PubMed
The bile-salt-dependent lipase from human milk, which catalyzes the hydrolysis of the water-soluble substrate 4-nitrophenyl acetate and the water-insoluble substrate tributyrin, is competitively inhibited by phenyl boronic acid. This inhibitor does not interfere with the interaction of lipase either with the siliconized glass beads/water interface or with the activator bile-salt binding site. The boronic acid binds near or at the active site serine, since modification of this residue by diisopropylphosphofluoridate (DFP) was prevented by phenyl boronic acid. Phenyl boronic acid binds 15-fold as tightly to bile-salt-dependent lipase as does 4-nitrophenyl acetate. Therefore, phenyl boronic acid bears analogy to a substrate rather than to a tetrahedral intermediate analog. Bile salts such as sodium taurocholate which are non-essential activators for the milk lipase activity on water-soluble substrates decrease the Km as well as the enzyme inhibitor dissociation constant (Ki). They have a slight effect on kcat. These results are interpreted in terms of an increase of the stability of the enzyme-substrate tetrahedral intermediate and in general of any transition states for the formation and for the decomposition of these intermediates upon the enzyme bile salts interaction.
        
Title: Mechanism of action of cutinase: chemical modification of the catalytic triad characteristic for serine hydrolases Koller W, Kolattukudy PE Ref: Biochemistry, 21:3083, 1982 : PubMed
Cutinase from Fusarium solani f. sp. pisi was inhibited by diisopropyl fluorophosphate and phenylboronic acid, indicating the involvement of an active serine residue in enzyme catalysis. Quantitation of the number of phosphorylated serines showed that modification of one residue resulted in complete loss of enzyme activity. One essential histidine residue was modified with diethyl pyrocarbonate. This residue was buried in native cutinase and became accessible to chemical modification only after unfolding of the enzyme by sodium dodecyl sulfate. The modification of carboxyl groups with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide in the absence of sodium dodecyl sulfate did not result in inactivation of the enzyme; however, such modifications in the presence of sodium dodecyl sulfate resulted in complete loss of enzyme activity. The number of residues modified was determined by incorporation of [14C]glycine ethyl ester. Modification of cutinase in the absence of sodium dodecyl sulfate and subsequent unfolding of the enzyme with detergent in the presence of radioactive glycine ester showed that one buried carboxyl group per molecule of cutinase resulted in complete inactivation of the enzyme. Three additional peripheral carboxyl groups were modified in the presence of sodium dodecyl sulfate. Carbethoxylation of the essential histidine and subsequent incubation with the esterase substrate p-nitrophenyl [1-14C]acetate revealed that carbethoxycutinase was about 10(5) times less active than the untreated enzyme. The acyl-enzyme intermediate was stabilized under these conditions and was isolated by gel permeation chromatography. The results of the present chemical modification study indicate that catalysis by cutinase involves the catalytic triad and an acyl-enzyme intermediate, both characteristic for serine proteases.