Riluzole is a benzothiazole derivative with neuroprotective and potential anti-depressant and anxiolytic activities. Has an inhibitory effect on glutamate release, inactivation of voltage-dependent sodium channels, and interference with intracellular events that follow transmitter binding at excitatory amino acid receptors. In animal models, this agent has been shown to exhibit myorelaxant and sedative activities, apparently due to the blockade of glutamatergic neurotransmission.
Alzheimer's disease (AD) is a major global public health concern and social care problem that is associated with learning, memory, and cognitive deficits. Riluzole is a glutamate modulator which has shown to improve memory performance in aged rats and may be of benefit in Alzheimer's disease. In the present study, its beneficial effect on attenuation of learning and memory deficits in Abeta25-35-induced rat model of AD was assessed. Riluzole administration at a dose of 10mg/kg/day p.o. improved spatial memory in Morris water maze and retention and recall in passive avoidance task and its protective effect was not neutralized following intracerebroventricular microinjection of muscarinic or nicotinic receptor antagonists. Further biochemical analysis showed that riluzole pretreatment of intrahippocampal Abeta-microinjected rats is able to attenuate hippocampal AChE activity and lower some oxidative stress markers, i.e. MDA and nitrite, with no significant change of the defensive enzyme catalase. Furthermore, riluzole prevented hippocampal CA1 neuronal loss and reduced 3-nitrotyrosine immunoreactivity. It is concluded that riluzole could exert a protective effect against memory decline induced by intrahippocampal Abeta25-35 through anti-oxidative, anti-cholinesterase, and neuroprotective potential and its beneficial effect is possibly independent of cholinoceptor activation.
        
Title: Pharmacological investigation of memory restorative effect of riluzole in mice Rinwa P, Jaggi AS, Singh N Ref: Indian J Pharmacol, 44:366, 2012 : PubMed
OBJECTIVE: Streptozotocin (STZ) and sodium nitrite (NaNO(2)) treatment have been positively correlated with higher incidence of memory loss and experimental dementia. The present study was designed to investigate the potential of the Riluzole, an inhibitor of glutamatergic neurotransmission and activator of TWIK-Related K(+) channels with incidences of memory deficits associated with dementia in mice. MATERIALS AND METHODS: Dementia was induced in Swiss albino mice by intracerebroventricular STZ (ICV) and by subcutaneous NaNO(2) in separate groups of animals. Morris water maze was employed to assess learning and memory of the animals. Biochemical analysis of brain homogenate was performed so as to assess brain acetyl cholinesterase (AChE) activity. Brain thiobarbituric acid reactive species (TBARS) levels and reduced glutathione (GSH) levels were measured to assess total oxidative stress. RESULTS: Treatment of ICV STZ and NaNO(2) produced a significant decrease in water maze performance of mice hence reflecting loss of learning and memory. Furthermore, higher levels of brain AChE activity and oxidative stress were observed in these animals. Administration of riluzole (5 and 10 mg/kg intraperitoneally) successfully attenuated memory deficits as well as ICV STZ- and NaNO(2) -induced changes in the levels of brain AChE, TBARS, and GSH. CONCLUSION: The memory restorative effects of riluzole in dementia may involve its multiple functions including anti-oxidative and anticholinesterase properties.
Riluzole has been shown recently to increase life expectancy in patients with amyotrophic lateral sclerosis. A number of experimental studies also suggest that this compound may be a neuroprotectant. We have investigated in baboons whether riluzole would protect striatal neurons from a prolonged 3-nitropropionic acid (3NP) treatment and ameliorate the associated motor symptoms. In animals receiving 3NP and the solvent of riluzole, 12 weeks of high-dose 3NP treatment resulted in the appearance of persistent leg dystonia and significant increases in the incidence of three categories of abnormal movements and in the dyskinesia index in the apomorphine test (0.5 mg/kg i.m.). Quantitative assessment of these behavioral deficits using a video movement analysis system demonstrated a significant decrease in locomotor activity and peak tangential velocity in 3NP-treated animals compared to controls. Histological analysis showed the presence of severe, bilateral, striatal lesions, localized in both caudate and putamen. Cotreatment with riluzole (4 mg/kg i.p., twice daily) significantly reduced the dyskinesia index (-35%, P < 0.02) in the apomorphine test. In the quantitative behavioral analysis, riluzole significantly ameliorated the decrease in peak tangential velocity (P < 0.02) but not the decrease in locomotor activity observed after 3NP. Comparative histological analysis of the two groups of treated animals did not demonstrate a clear neuroprotective effect of riluzole. The present study suggests that one potential therapeutic interest for riluzole in neurodegenerative disorders may reside in the reduction of motor symptoms associated with striatal lesions.
Alzheimer's disease (AD) is a major global public health concern and social care problem that is associated with learning, memory, and cognitive deficits. Riluzole is a glutamate modulator which has shown to improve memory performance in aged rats and may be of benefit in Alzheimer's disease. In the present study, its beneficial effect on attenuation of learning and memory deficits in Abeta25-35-induced rat model of AD was assessed. Riluzole administration at a dose of 10mg/kg/day p.o. improved spatial memory in Morris water maze and retention and recall in passive avoidance task and its protective effect was not neutralized following intracerebroventricular microinjection of muscarinic or nicotinic receptor antagonists. Further biochemical analysis showed that riluzole pretreatment of intrahippocampal Abeta-microinjected rats is able to attenuate hippocampal AChE activity and lower some oxidative stress markers, i.e. MDA and nitrite, with no significant change of the defensive enzyme catalase. Furthermore, riluzole prevented hippocampal CA1 neuronal loss and reduced 3-nitrotyrosine immunoreactivity. It is concluded that riluzole could exert a protective effect against memory decline induced by intrahippocampal Abeta25-35 through anti-oxidative, anti-cholinesterase, and neuroprotective potential and its beneficial effect is possibly independent of cholinoceptor activation.
        
Title: Pharmacological investigation of memory restorative effect of riluzole in mice Rinwa P, Jaggi AS, Singh N Ref: Indian J Pharmacol, 44:366, 2012 : PubMed
OBJECTIVE: Streptozotocin (STZ) and sodium nitrite (NaNO(2)) treatment have been positively correlated with higher incidence of memory loss and experimental dementia. The present study was designed to investigate the potential of the Riluzole, an inhibitor of glutamatergic neurotransmission and activator of TWIK-Related K(+) channels with incidences of memory deficits associated with dementia in mice. MATERIALS AND METHODS: Dementia was induced in Swiss albino mice by intracerebroventricular STZ (ICV) and by subcutaneous NaNO(2) in separate groups of animals. Morris water maze was employed to assess learning and memory of the animals. Biochemical analysis of brain homogenate was performed so as to assess brain acetyl cholinesterase (AChE) activity. Brain thiobarbituric acid reactive species (TBARS) levels and reduced glutathione (GSH) levels were measured to assess total oxidative stress. RESULTS: Treatment of ICV STZ and NaNO(2) produced a significant decrease in water maze performance of mice hence reflecting loss of learning and memory. Furthermore, higher levels of brain AChE activity and oxidative stress were observed in these animals. Administration of riluzole (5 and 10 mg/kg intraperitoneally) successfully attenuated memory deficits as well as ICV STZ- and NaNO(2) -induced changes in the levels of brain AChE, TBARS, and GSH. CONCLUSION: The memory restorative effects of riluzole in dementia may involve its multiple functions including anti-oxidative and anticholinesterase properties.
Title: Riluzole for motor neurone disease. Ambiguous diagnostic criteria mean that wide variations in elgibility may still persist Stewart R Ref: BMJ, 322:1305, 2001 : PubMed
We examined the effects of riluzole, a neuroprotective drug, on voltage-dependent Na channels, nicotinic receptors, and voltage-dependent Ca channels, as well as catecholamine secretion, in comparison with those of verapamil and nicardipine, in primary cultures of bovine adrenal chromaffin cells. Riluzole inhibited veratridine-induced 22Na influx via voltage-dependent Na channels even in the presence of ouabain, an inhibitor of Na,K-ATPase. Blockade of Na channels by riluzole was concentration-dependent with an IC50 of 5.3 microM. It was associated with a similar concentration-related reduction of veratridine-induced 45Ca influx via voltage-dependent Ca channels, and of catecholamine secretion. Riluzole had no effect on 45Ca influx caused by high K, which directly activates voltage-dependent Ca channels, and on nicotine-induced 22Na influx, which passes through the nicotinic receptors. Verapamil and nicardipine attenuated 22Na influx caused by veratridine or nicotine at the same concentrations as they suppressed high K-induced 45Ca influx. The inhibitory effect of riluzole on veratridine-induced 22Na influx disappeared at high concentrations of veratridine. A potentiation of veratridine (site 2 toxin)-induced 22Na influx caused by alpha-scorpion venom (site 3 toxin), beta-scorpion venom (site 4 toxin), or brevetoxin PbTx-3 (site 5 toxin), occurred in the presence of riluzole in the same manner as in control cells. These results suggest that riluzole binds to the veratridine site in voltage-dependent Na channels. It does not impair the cooperative interaction between the functional peptide segments of Na channels, but selectively inhibits gating of Na channels, thereby reducing Ca influx via Ca channels and catecholamine secretion. In contrast, verapamil and nicardipine suppress Na influx both Na channels and nicotinic receptors.
Riluzole has been shown recently to increase life expectancy in patients with amyotrophic lateral sclerosis. A number of experimental studies also suggest that this compound may be a neuroprotectant. We have investigated in baboons whether riluzole would protect striatal neurons from a prolonged 3-nitropropionic acid (3NP) treatment and ameliorate the associated motor symptoms. In animals receiving 3NP and the solvent of riluzole, 12 weeks of high-dose 3NP treatment resulted in the appearance of persistent leg dystonia and significant increases in the incidence of three categories of abnormal movements and in the dyskinesia index in the apomorphine test (0.5 mg/kg i.m.). Quantitative assessment of these behavioral deficits using a video movement analysis system demonstrated a significant decrease in locomotor activity and peak tangential velocity in 3NP-treated animals compared to controls. Histological analysis showed the presence of severe, bilateral, striatal lesions, localized in both caudate and putamen. Cotreatment with riluzole (4 mg/kg i.p., twice daily) significantly reduced the dyskinesia index (-35%, P < 0.02) in the apomorphine test. In the quantitative behavioral analysis, riluzole significantly ameliorated the decrease in peak tangential velocity (P < 0.02) but not the decrease in locomotor activity observed after 3NP. Comparative histological analysis of the two groups of treated animals did not demonstrate a clear neuroprotective effect of riluzole. The present study suggests that one potential therapeutic interest for riluzole in neurodegenerative disorders may reside in the reduction of motor symptoms associated with striatal lesions.