Search PubMed for references concerning: Sanguinine
5 moreTitle: Alkaloids from Habranthus tubispathus and H. jamesonii, two amaryllidaceae with acetyl- and butyrylcholinesterase inhibition activity Cavallaro V, Alza NP, Murray MG, Murray AP Ref: Nat Prod Commun, 9:159, 2014 : PubMed
Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. Plants of the Amaryllidaceae family are known to synthesize alkaloids, which have shown AChE inhibitory activity. Habranthus tubispathus and H. jamesonii are two Amaryllidaceae that can be found growing wild to the southwest of Buenos Aires in Argentina. Acetyl- and butyrylcholinesterase inhibition was observed for the extracts obtained from bulbs of H. tubispathus and bulbs and aerial parts of H. jamesonii. The strongest cholinesterase inhibition was observed for the alkaloid extract obtained from the aerial parts for H. jamesonii (AChE IC50 = 0.7 microg/mL; BChE IC50 = 6.7 microg/mL). The AChE inhibition observed for H. jamesonii could be explained by the presence of galanthamine and sanguinine, two potent AChE inhibitors. The levels of lycorine and hippeastidine, moderate AChE inhibitors, observed in the bulbs of H. tubispathus could be responsible for the significant AChE inhibition observed. The alkaloids present in these Amaryllidaceae were identified by means of GC-MS analysis. In the case of H. tubispathus, hippeastidine and 3-O-demethylhippeastidine, were isolated and completely characterized by 1H and 13C NMR spectroscopy.
Galanthamine-type alkaloids produced by plants of the Amaryllidaceae family are potent acetylcholinesterase inhibitors. One of them, galanthamine, has been marketed as a hydrobromide salt for the treatment of Alzheimer's disease. In the present work, gas chromatography with electron impact mass spectrometry (GC-EIMS) fragmentation of 12 reference compounds isolated from various amaryllidaceous plants and identified by spectroscopic methods (1D and 2D nuclear magnetic resonance, circular dichroism, high-resolution MS (HRMS) and EIMS) was studied by tandem mass spectrometry (GC-MS/MS) and accurate mass measurements (GC-HRMS). The studied compounds showed good peak shape and efficient GC separation with a GC-MS fragmentation pattern similar to that obtained by direct insertion probe. With the exception of galanthamine-N-oxide and N-formylnorgalanthamine, the galanthamine-type compounds showed abundant [M](+.) and [M-H](+) ions. A typical fragmentation pattern was also observed, depending on the substituents of the skeleton. Based on the fragmentation pathways of reference compounds, three other galanthamine-type alkaloids, including 3-O-(2'-butenoyl)sanguinine, which possesses a previously unelucidated structure, were identified in Leucojum aestivum ssp. pulchelum, a species endemic to the Balearic islands. GC-MS can be successfully applied to Amaryllidaceae plant samples in the routine screening for potentially new or known bioactive molecules, chemotaxonomy, biodiversity and identification of impurities in pharmaceutical substances.
Alkaloid extracts from 12 plant species of the families Amaryllidaceae, Fumariacae and Papaveraceae were studied with respect to their acetylcholinesterase inhibitory activity and alkaloid patterns. Fifty-three alkaloids were identified by GC-MS, including known acetylcholinesterase (AChE) inhibitors such as galanthamine, epigalanthamine, sanguinine and epinorgalanthamine in extracts of Amaryllidaceae plants and protopine in extracts of Fumariaceae and Papaveraceae plants. The galanthamine-containing extracts of the amaryllidaceous plants were found to be the most active while the extract of Corydalis bulbosa was the most active among the extracts of the tested plants from the Fumariaceae and Papaveraceae plants. TLC bioautographic assay, preparative TLC and GC-MS analysis were combined to identify the active compounds in the studied extracts. Galanthamine was isolated from the known AChE inhibitors in the extracts of Amaryllidaceae plants. Corydaline, bulbocapnine and stylopine were found to be active in the extracts of plant species of the families Fumariaceae and Papaveraceae. Available standards of deshydrocorydaline--a precursor of corydaline, corydaline and stylopine--were tested for AChE inhibitory activity. Deshydrocorydaline and corydaline showed potent inhibitory activity comparable with that of the positive control galanthamine.
Plant biodiversity is an important source of compounds with medicinal properties. The alkaloid galanthamine, first isolated from Galanthus woronowii (Amaryllidaceae), is approved by the FDA for the palliative treatment of mild to moderate Alzheimer's disease due to its acetylcholinesterase (AChE) inhibitory activity. Obtaining this active pharmaceutical ingredient, still sourced on an industrial scale from the Amaryllidaceae species, is a challenge for pharmaceutical companies due to its low natural yield and the high cost of its synthesis. The aim of this work was to determine the alkaloid profile of three different Rauhia (Amaryllidaceae) species collected in Peru, and to assess the potential application of their extracts for the treatment of Alzheimer's disease. The alkaloids were identified by gas chromatography coupled to mass spectrometry (GC-MS), and the AChE inhibitory activity of the extracts was analyzed. Thirty compounds were quantified from the Rauhia species, the R. multiflora extract being the most interesting due to its high diversity of galanthamine-type structures. The R. multiflora extract was also the most active against AChE, with the half maximal inhibitory concentration (IC(50)) values of 0.17 +/- 0.02 microg.mL(-1) in comparison with the IC(50) values of 0.53 +/- 0.12 microg.mL(-1) for galanthamine, used as a reference. Computational experiments were carried out on the activity of the galanthamine-type alkaloids identified in R. multiflora toward five different human AChE structures. The simulation of the molecules 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lycoraminone on the 4EY6 crystal structure theoretically showed a higher inhibition of hAChE and different interactions with the active site compared to galanthamine. In conclusion, the results of this first alkaloid profiling of the Rauhia species indicate that R. multiflora is an important natural source of galanthamine-type structures and could be used as a model for the development of biotechnological tools necessary to advance the sustainable production of galanthamine.
Three undescribed Amarylidaceae alkaloids, named gigantelline, gigantellinine and gigancrinine, were isolated from Crinum jagus (syn.=Crinum giganteum) collected in Senegal, together with the already known sanguinine, cherylline, lycorine, crinine, flexinine and the isoquinolinone derivative hippadine. Gigantelline, gigantellinine and gigancrinine were characterized as 4-(6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-yl)-phenol, its 7-O-demethyl-5-hydroxy-4-methoxy derivative and 5,6a,7,7a,8a,9-hexahydro-6,9a-ethano[1,3]dioxolo[4,5-j]oxireno[2,3-b]phenanthridi n-9-ol, respectively, by using spectroscopic (1D and 2D (1)H and (13)C NMR and HRESIMS) and chemical methods. Their relative configuration was assigned by NOESY NMR spectra and NMR calculations, while the absolute configuration was assigned using electronic circular dichroism (ECD) experiments and calculations. Sanguinine, cherylline, crinine, flexinine, and the isoquinolinone hippadine, were isolated for the first time from C. jagus. Cherylline, gigantellinine, crinine, flexinine and sanguinine inhibited the activity of AChE in a dose-dependent manner, and inhibition by sanguinine was remarkably effective (IC50=1.83+/-0.01muM). Cherylline and hippadine showed weak cytotoxicity at 100muM.
BACKGROUND: In Argentina, the Amaryllidaceae family (59 species) comprises a wide variety of genera, only a few species have been investigated as a potential source of cholinesterases inhibitors to treat Alzheimer disease (AD). PURPOSE: To study the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of the basic dichloromethane extracts (E) from Hieronymiella aurea, H. caletensis, H. clidanthoides, H. marginata, and H. speciosa species, as well as the isolated compounds from these plant extracts. STUDY DESIGN AND METHODS: AChE and BChE inhibitory activities were evaluated with the Ellman's spectrophotometric method. The alkaloids composition from the E was obtained by gas chromatography-mass spectrometry (GC-MS). The E were successively chromatographed on a silica gel column and permeated on Sephadex LH-20 column to afford the main alkaloids identified by means of spectroscopic data. Additionally, an in silico study was carried out. RESULTS: Nine known alkaloids were isolated from the E of five Hieronymiella species. Galanthamine was identified in all the species by GC-MS standing out H. caletensis with a relative abundance of 9.79% of the total ion current. Strong AChE (IC50=1.84 - 15.40microg/ml) and moderate BChE (IC50=23.74 - 136.40microg/ml) inhibitory activities were displayed by the extracts. Among the isolated alkaloids, only sanguinine and chlidanthine (galanthamine-type alkaloids) demonstrated inhibitory activity toward both enzymes. The QTAIM study suggests that sanguinine has the strongest affinity towards AChE, attributed to an additional interaction with Ser200 as well as stronger molecular interactions Glu199 and His440.These results allowed us to differentiate the molecular behavior in the active site among alkaloids possessing different in vitro inhibitory activities. CONCLUSION: Hieronymiella species growing in Argentina represent a rich and widespread source of galanthamine and others AChE and BChE inhibitors alkaloids. Additionally, the new trend towards the use of natural extracts as pharmaceuticals rather than pure drugs opens a pathway for the development of a phytomedicine derived from extracts of Hieronymiella spp.
        
Title: Cooperative hydrogen bonds and mobility of the non-aromatic ring as selectivity determinants for human acetylcholinesterase to similar anti-Alzheimer's galantaminics: a computational study Rocha REO, Lima LHF Ref: J Biomol Struct Dyn, :1, 2018 : PubMed
Galantamine (Gnt) is a natural alkaloid inhibitor of acetylcholinesterase and is presently one of the most used drugs in the treatment against Alzheimer's disease during both the initial and intermediate stages. Among several natural Gnt derivatives, sanguinine (Sng) and lycoramine (Lyc) attract attention because of the way their subtle chemical differences from Gnt lead to drastic and opposite distinctions in inhibitory effects. However, to date there is no solved structure for these natural derivatives. In the present study, we applied computational modeling and free energy calculation methods to better elucidate the molecular basis of the subtle distinctions between these derivatives and Gnt. The results showed that differences in the mobility of the non-aromatic ring carried by the Lyc-like sp(2)-sp(3) modification display drastic conformational, vibrational, and entropic penalties at binding compared to Gnt. Additionally, the establishment of a stronger hydrogen bond network added enthalpic advantages for the linkage of the Sng-like methoxy-hydroxy substituted ligands. These results, which suggest an affinity ranking in agreement with that found in the literature, provided insights that are helpful for future planning and development of new anti-Alzheimer's disease drugs.
        
Title: Alkaloids from Habranthus tubispathus and H. jamesonii, two amaryllidaceae with acetyl- and butyrylcholinesterase inhibition activity Cavallaro V, Alza NP, Murray MG, Murray AP Ref: Nat Prod Commun, 9:159, 2014 : PubMed
Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. Plants of the Amaryllidaceae family are known to synthesize alkaloids, which have shown AChE inhibitory activity. Habranthus tubispathus and H. jamesonii are two Amaryllidaceae that can be found growing wild to the southwest of Buenos Aires in Argentina. Acetyl- and butyrylcholinesterase inhibition was observed for the extracts obtained from bulbs of H. tubispathus and bulbs and aerial parts of H. jamesonii. The strongest cholinesterase inhibition was observed for the alkaloid extract obtained from the aerial parts for H. jamesonii (AChE IC50 = 0.7 microg/mL; BChE IC50 = 6.7 microg/mL). The AChE inhibition observed for H. jamesonii could be explained by the presence of galanthamine and sanguinine, two potent AChE inhibitors. The levels of lycorine and hippeastidine, moderate AChE inhibitors, observed in the bulbs of H. tubispathus could be responsible for the significant AChE inhibition observed. The alkaloids present in these Amaryllidaceae were identified by means of GC-MS analysis. In the case of H. tubispathus, hippeastidine and 3-O-demethylhippeastidine, were isolated and completely characterized by 1H and 13C NMR spectroscopy.
Galanthamine-type alkaloids produced by plants of the Amaryllidaceae family are potent acetylcholinesterase inhibitors. One of them, galanthamine, has been marketed as a hydrobromide salt for the treatment of Alzheimer's disease. In the present work, gas chromatography with electron impact mass spectrometry (GC-EIMS) fragmentation of 12 reference compounds isolated from various amaryllidaceous plants and identified by spectroscopic methods (1D and 2D nuclear magnetic resonance, circular dichroism, high-resolution MS (HRMS) and EIMS) was studied by tandem mass spectrometry (GC-MS/MS) and accurate mass measurements (GC-HRMS). The studied compounds showed good peak shape and efficient GC separation with a GC-MS fragmentation pattern similar to that obtained by direct insertion probe. With the exception of galanthamine-N-oxide and N-formylnorgalanthamine, the galanthamine-type compounds showed abundant [M](+.) and [M-H](+) ions. A typical fragmentation pattern was also observed, depending on the substituents of the skeleton. Based on the fragmentation pathways of reference compounds, three other galanthamine-type alkaloids, including 3-O-(2'-butenoyl)sanguinine, which possesses a previously unelucidated structure, were identified in Leucojum aestivum ssp. pulchelum, a species endemic to the Balearic islands. GC-MS can be successfully applied to Amaryllidaceae plant samples in the routine screening for potentially new or known bioactive molecules, chemotaxonomy, biodiversity and identification of impurities in pharmaceutical substances.
Alkaloid extracts from 12 plant species of the families Amaryllidaceae, Fumariacae and Papaveraceae were studied with respect to their acetylcholinesterase inhibitory activity and alkaloid patterns. Fifty-three alkaloids were identified by GC-MS, including known acetylcholinesterase (AChE) inhibitors such as galanthamine, epigalanthamine, sanguinine and epinorgalanthamine in extracts of Amaryllidaceae plants and protopine in extracts of Fumariaceae and Papaveraceae plants. The galanthamine-containing extracts of the amaryllidaceous plants were found to be the most active while the extract of Corydalis bulbosa was the most active among the extracts of the tested plants from the Fumariaceae and Papaveraceae plants. TLC bioautographic assay, preparative TLC and GC-MS analysis were combined to identify the active compounds in the studied extracts. Galanthamine was isolated from the known AChE inhibitors in the extracts of Amaryllidaceae plants. Corydaline, bulbocapnine and stylopine were found to be active in the extracts of plant species of the families Fumariaceae and Papaveraceae. Available standards of deshydrocorydaline--a precursor of corydaline, corydaline and stylopine--were tested for AChE inhibitory activity. Deshydrocorydaline and corydaline showed potent inhibitory activity comparable with that of the positive control galanthamine.
        
Title: Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts Lopez S, Bastida J, Viladomat F, Codina C Ref: Life Sciences, 71:2521, 2002 : PubMed
Amaryllidaceous plants produce pharmacologically active alkaloids, galanthamine being the most interesting for its use in the treatment of Alzheimer's disease as a cholinesterase inhibitor. The aim of this work was to test 23 pure Amaryllidaceae alkaloids and 26 extracts from different species of the genus Narcissus for their acetylcholinesterase inhibitory activity using galanthamine as a reference. Only seven alkaloids, belonging to the galanthamine and lycorine skeleton types, exhibited such an effect, sanguinine being the most active, even more than galanthamine. All the extracts with the highest acetylcholinesterase inhibitory activity contained galanthamine except that of N. assoanus, a lycorine type alkaloid-bearing species.