Tanshinone IIA, extracted from a Chinese herb Salvia miltiorrhiza Bunge (Danshen), has been clinically used to treat diverse disorders such as inflammation, myocardial ischemia, and atherosclerosis. Potent, irreversible inhibition of human carboxylesterases Tanshinone Anhydride hCE1 Ki 1.9nm hiCE Ki 1.4nM
The roots of Salvia miltiorrhiza ("Danshen") have been used in Chinese herbal medicine for centuries for a host of different conditions. While the exact nature of the active components of this material are unknown, large amounts of tanshinones are present in extracts derived from these samples. Recently, the tanshinones have been demonstrated to be potent human carboxylesterase (CE) inhibitors, with the ability to modulate the biological activity of esterified drugs. During the course of these studies, we also identified more active, irreversible inhibitors of these enzymes. We have purified, identified, and synthesized these molecules and confirmed them to be the anhydride derivatives of the tanshinones. These compounds are exceptionally potent inhibitors ( Ki < 1 nM) and can inactivate human CEs both in vitro and in cell culture systems and can modulate the metabolism of the esterified drug oseltamivir. Therefore, the coadministration of Danshen extracts with drugs that contain the ester chemotype should be minimized since, not only is transient inhibition of CEs observed with the tanshinones, but also prolonged irreversible inhibition arises via interaction with the anhydrides.
Due to ineffectiveness and side effects of existing analgesics, chronic pain has become one of the most complex and difficult problems in the clinic. Monoacylglycerol lipase (MAGL) is an essential hydrolase in the endocannabinoid system and has been identified as a potential target for the treatment of pain. In the present study, we designed and synthesized twelve tanshinone IIA analogs and screened their activity against MAGL. Selected compounds were tested for analgesic activity in vivo, with the acetic acid writhing test model. Among the test compounds, compound III-3 (IC50 120 nmol.L(-1)) showed significant activity against MAGL and ameliorated the clinical progression in the mouse pain model. Additionally, compound III-3, substitution with N-methyl-2-morpholinoacetamide, demonstrated improved solubility relative to tanshinone IIA.
Our previous studies demonstrated that tanshinone IIA (tan IIA) has significant protective effects against the neurotoxicity induced by beta-amyloid protein (Abeta) in cultured cortical neurons and PC12 cells. This study was designed to investigate the protective effects of tan IIA against memory deficits induced by streptozotocin (STZ) in a model of sporadic Alzheimer's disease (AD). STZ was injected twice intracerebroventrically (3mg/kg ICV) on alternate days (day 1 and day 3) in mice. Daily treatment with tan IIA (20, 40, and 80mg/kg, i.g.) starting from the first dose of STZ for 28 days showed a dose dependent improvement in STZ induced memory deficits as assessed by Morris water maze (MWM) test. Nissl staining results confirmed the protective effects of tan IIA on cerebral cortical and hippocampal neurons damage induced by STZ. In addition, tan IIA markedly reduced STZ induced elevation in acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level, and significantly inhibited STZ induced reduction in superoxide dismutases (SOD) and glutathione peroxidase (GSH-Px) activities in the parietal cortex and hippocampus. Moreover, tan IIA attenuated p38 mitogen activated protein kinase (MAPK) phosphorylation in the parietal cortex and hippocampus. These findings demonstrate that tan IIA prevents STZ induced memory deficits may be attributed to ameliorating neuronal damage, restoring cholinergic function, attenuating oxidative stress and blocking p38 MAPK signal pathway activation. Based on our previous studies, the present study provides further support for the potential use of tan IIA in the treatment of AD.
Alzheimer's disease (AD) is a most common neurodegenerative disease. Sodium Tanshinone IIA Sulfonate (STS) has been reported to ameliorate AD pathology. However, the underlying mechanism is still unclear. In this study, AD transgenic mouse model (APP/PS1) was used to explore the potential mechanism of STS against AD. Morris water maze and Y-maze tests showed that administration of STS improved learning and memory abilities of APP/PS1 mice. STS reduced the levels of reactive oxygen species and malondialdehyde, while improved the activity of superoxide dismutase in both hippocampus and cortex in APP/PS1 mice. STS inhibited the activity of acetylcholinesterase, while improved the activity of choline acetyltransferase in APP/PS1 mice. In addition, STS elevated the protein expressions of neurotrophic factors and synapse-related proteins in both the hippocampus and cortex in APP/PS1 mice. At last, STS improved the protein expressions of glucose transporter 1 (GLUT1) and low-density lipoprotein receptor-related protein 1 (LRP1). These results indicated that the potential mechanism of STS on AD might be related to Abeta transportation function via GLUT1/LRP1 pathway. HIGHLIGHTS: STS improves cognitive impairment of APP/PS1 mice. STS ameliorates the oxidative stress damage and improves the cholinergic system. STS protects against neuronal dysfunction and enhances the synaptic plasticity. STS mediates the Abeta transportation of BMECs.
        
Title: Tanshinone IIA regulates glycogen synthase kinase-3beta-related signaling pathway and ameliorates memory impairment in APP/PS1 transgenic mice Peng X, Chen L, Wang Z, He Y, Ruganzu JB, Guo H, Zhang X, Ji S, Zheng L, Yang W Ref: European Journal of Pharmacology, :174772, 2022 : PubMed
Our previous findings indicated that tanshinone IIA (tan IIA), a natural component extracted from the root and rhizome of danshen, significantly attenuated beta-amyloid accumulation, neuroinflammation, and endoplasmic reticulum stress, as well as improved learning and memory deficits in APP/PS1 transgenic mouse model of Alzheimer's disease (AD). However, whether tan IIA can ameliorate tau pathology and the underlying mechanism in APP/PS1 mice remains unclear. In the current study, tan IIA (15 mg/kg and 30 mg/kg) or saline was intraperitoneally administered to the 5-month-old APP/PS1 mice once daily for 4 weeks. The open-field test, novel object recognition test, Y-maze test, and Morris water maze test were performed to assess the cognitive function. Nissl staining, immunohistochemistry, TUNEL, and western blotting were conducted to explore tau hyperphosphorylation, neuronal injury, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt)/glycogen synthase kinase-3beta (GSK-3beta) signaling pathway. The activity of GSK-3beta, acetylcholinesterase (AChE), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), and the level of malondialdehyde (MDA) were measured using commercial kits. Our results revealed that tan IIA treatment significantly ameliorated behavioral deficits and improved spatial learning and memory ability of APP/PS1 mice. Additionally, tan IIA markedly attenuated tau hyperphosphorylation and prevented neuronal loss and apoptosis in the parietal cortex and hippocampus. Simultaneously, tan IIA reversed cholinergic dysfunction and reduced oxidative stress. Furthermore, tan IIA activated the PI3K/Akt signaling pathway and suppressed GSK-3beta. Taken together, the above findings suggested that tan IIA improves cognitive decline and tau pathology may through modulation of PI3K/Akt/GSK-3beta signaling pathway.
        
Title: Potent, Irreversible Inhibition of Human Carboxylesterases by Tanshinone Anhydrides Isolated from Salvia miltiorrhiza (Danshen) Hatfield MJ, Binder RJ, Gannon R, Fratt EM, Bowling J, Potter PM Ref: Journal of Natural Products, 81:2410, 2018 : PubMed
The roots of Salvia miltiorrhiza ("Danshen") have been used in Chinese herbal medicine for centuries for a host of different conditions. While the exact nature of the active components of this material are unknown, large amounts of tanshinones are present in extracts derived from these samples. Recently, the tanshinones have been demonstrated to be potent human carboxylesterase (CE) inhibitors, with the ability to modulate the biological activity of esterified drugs. During the course of these studies, we also identified more active, irreversible inhibitors of these enzymes. We have purified, identified, and synthesized these molecules and confirmed them to be the anhydride derivatives of the tanshinones. These compounds are exceptionally potent inhibitors ( Ki < 1 nM) and can inactivate human CEs both in vitro and in cell culture systems and can modulate the metabolism of the esterified drug oseltamivir. Therefore, the coadministration of Danshen extracts with drugs that contain the ester chemotype should be minimized since, not only is transient inhibition of CEs observed with the tanshinones, but also prolonged irreversible inhibition arises via interaction with the anhydrides.
Due to ineffectiveness and side effects of existing analgesics, chronic pain has become one of the most complex and difficult problems in the clinic. Monoacylglycerol lipase (MAGL) is an essential hydrolase in the endocannabinoid system and has been identified as a potential target for the treatment of pain. In the present study, we designed and synthesized twelve tanshinone IIA analogs and screened their activity against MAGL. Selected compounds were tested for analgesic activity in vivo, with the acetic acid writhing test model. Among the test compounds, compound III-3 (IC50 120 nmol.L(-1)) showed significant activity against MAGL and ameliorated the clinical progression in the mouse pain model. Additionally, compound III-3, substitution with N-methyl-2-morpholinoacetamide, demonstrated improved solubility relative to tanshinone IIA.
Our previous studies demonstrated that tanshinone IIA (tan IIA) has significant protective effects against the neurotoxicity induced by beta-amyloid protein (Abeta) in cultured cortical neurons and PC12 cells. This study was designed to investigate the protective effects of tan IIA against memory deficits induced by streptozotocin (STZ) in a model of sporadic Alzheimer's disease (AD). STZ was injected twice intracerebroventrically (3mg/kg ICV) on alternate days (day 1 and day 3) in mice. Daily treatment with tan IIA (20, 40, and 80mg/kg, i.g.) starting from the first dose of STZ for 28 days showed a dose dependent improvement in STZ induced memory deficits as assessed by Morris water maze (MWM) test. Nissl staining results confirmed the protective effects of tan IIA on cerebral cortical and hippocampal neurons damage induced by STZ. In addition, tan IIA markedly reduced STZ induced elevation in acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level, and significantly inhibited STZ induced reduction in superoxide dismutases (SOD) and glutathione peroxidase (GSH-Px) activities in the parietal cortex and hippocampus. Moreover, tan IIA attenuated p38 mitogen activated protein kinase (MAPK) phosphorylation in the parietal cortex and hippocampus. These findings demonstrate that tan IIA prevents STZ induced memory deficits may be attributed to ameliorating neuronal damage, restoring cholinergic function, attenuating oxidative stress and blocking p38 MAPK signal pathway activation. Based on our previous studies, the present study provides further support for the potential use of tan IIA in the treatment of AD.
Sodium Tanshinone IIA sulfonate (STS) is a derivative of Tanshinone IIA (Tan IIA). Tan IIA has been reported to possess neuroprotective effects against Alzheimer's disease (AD). However, whether STS possesses effect on AD remains unclear. This study aims to estimate whether STS could protect against scopolamine- (SCOP-) induced learning and memory deficit in Kunming mice. Morris water maze results showed that oral administration of STS (10 mg/kg and 20 mg/kg) and Donepezil shortened escape latency, increased crossing times of the original position of the platform, and increased the time spent in the target quadrant. STS decreased the activity of acetylcholinesterase (AChE) and increased the activity of choline acetyltransferase (ChAT) in the hippocampus and cortex of SCOP-treated mice. Oxidative stress results showed that STS increased the activity of superoxide dismutase (SOD) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in hippocampus and cortex. In addition, western blot was carried out to detect the expression of apoptosis related proteins (Bcl-2, Bax, and Caspase-3). STS upregulated the protein expression of Bcl-2 and downregulated the proteins expression of Bax and Caspase-3. These results indicated that STS might become a promising therapeutic candidate for attenuating AD-like pathological dysfunction.
        
Title: Identification of tanshinone IIA as a natural monoacylglycerol lipase inhibitor by combined in silico and in vitro approach Yang R, Lu Y, Liu J Ref: Med Chem Commun, 5:1528, 2014 : PubMed
Monoacylglycerol lipase (MAGL) was proposed as a novel target for the treatment of Alzheimer's disease (AD). In this paper, in silico screening of a focused library was implemented to dock natural products against MAGL to evaluate the calculated binding affinities of ligands with the receptor. Five hits were experimentally tested to determine their inhibitory effects on MAGL in vitro. Finally, tanshinone IIA (1) was successfully identified as a natural MAGL inhibitor in a concentration dependent manner with an IC50 value of 48 M. Considering being used as long-term treatment of cardiovascular diseases in China, tanshinone IIA has the potential to be developed as a good candidate for the treatment of AD and other MAGL-associated diseases.