JMN4 exhibited superior potency for inhibiting recombinant mouse (IC50 = 90 nM) and human (IC50 = 5.9 nM) Lp-PLA2 compared to either WWL153 (IC50 = 290 nM for mouse Lp-PLA2; IC50 = 250 nM for human Lp-PLA2) or P9 (IC50 = 470 nM for mouse Lp-PLA2; IC50 = 100 nM for human Lp-PLA2)
Lipoprotein-associated phospholipase A(2) (Lp-PLA(2) or PLA(2)G7) binds to low-density lipoprotein (LDL) particles, where it is thought to hydrolyze oxidatively truncated phospholipids. Lp-PLA(2) has also been implicated as a pro-tumorigenic enzyme in human prostate cancer. Several inhibitors of Lp-PLA(2) have been described, including darapladib, which is currently in phase 3 clinical development for the treatment of atherosclerosis. The selectivity that darapladib and other Lp-PLA(2) inhibitors display across the larger serine hydrolase family has not, however, been reported. Here, we describe the use of both general and tailored activity-based probes for profiling Lp-PLA(2) and inhibitors of this enzyme in native biological systems. We show that both darapladib and a novel class of structurally distinct carbamate inhibitors inactivate Lp-PLA(2) in mouse tissues and human cell lines with high selectivity. Our findings thus identify both inhibitors and chemoproteomic probes that are suitable for investigating Lp-PLA(2) function in biological systems.
Serine hydrolases (SHs) are one of the largest and most diverse enzyme classes in mammals. They play fundamental roles in virtually all physiological processes and are targeted by drugs to treat diseases such as diabetes, obesity, and neurodegenerative disorders. Despite this, we lack biological understanding for most of the 110+ predicted mammalian metabolic SHs, in large part because of a dearth of assays to assess their biochemical activities and a lack of selective inhibitors to probe their function in living systems. We show here that the vast majority (> 80%) of mammalian metabolic SHs can be labeled in proteomes by a single, active site-directed fluorophosphonate probe. We exploit this universal activity-based assay in a library-versus-library format to screen 70+ SHs against 140+ structurally diverse carbamates. Lead inhibitors were discovered for approximately 40% of the screened enzymes, including many poorly characterized SHs. Global profiles identified carbamate inhibitors that discriminate among highly sequence-related SHs and, conversely, enzymes that share inhibitor sensitivity profiles despite lacking sequence homology. These findings indicate that sequence relatedness is not a strong predictor of shared pharmacology within the SH superfamily. Finally, we show that lead carbamate inhibitors can be optimized into pharmacological probes that inactivate individual SHs with high specificity in vivo.