AIMS: This study investigated the influence of CES1 variations, including the single nucleotide polymorphism (SNP) rs71647871 (G143E) and variation in copy number, on the pharmacokinetics of a single oral dose of 10 mg methylphenidate. METHODS: CES1 genotype was obtained from 200 healthy Danish Caucasian volunteers. Based on the genotype, 44 (19 males and 25 females) were invited to participate in an open, prospective trial involving six predefined genotypes: three groups with two, three and four CES1 copies, respectively; a group of carriers of the CES1 143E allele; a group of individuals homozygous for CES1A1c (CES1VAR); and a group having three CES1 copies, in which the duplication, CES1A2, had increased transcriptional activity. Plasma concentrations of methylphenidate and its primary metabolites were determined at scheduled time points. RESULTS: Median AUC of d-methylphenidate was significantly larger in the group carrying the 143E allele (53.3 ng ml-1 h-1 , range 38.6-93.9) than in the control group (21.4 ng ml-1 h-1 , range 15.7-34.9) (P < 0.0001). Median AUC of d-methylphenidate was significantly larger in the group with four CES1 copies (34.5 ng ml-1 h-1 , range 21.3-62.8) than in the control group (P = 0.01) and the group with three CES1 copies (23.8 ng ml-1 h-1 , range 15.3-32.0, P = 0.03). There was no difference between the groups with two and three copies of CES1. CONCLUSIONS: The 143E allele resulted in an increased AUC, suggesting a significantly decreased CES1 enzyme activity. Surprisingly, this was also the case in subjects with homozygous duplication of CES1, perhaps reflecting an undiscovered mutation affecting the activity of the enzyme.
OBJECTIVE: CES1 encodes carboxylesterase-1, an important drug-metabolizing enzyme with high expression in the liver. Previous studies have reported a genomic translocation of the 5' region from the poorly expressed pseudogene CES1P1, to CES1, yielding the structural variant CES1VAR. The aim of this study was to characterize this translocation and its effect on CES1 expression in the human liver. MATERIALS AND METHODS: Experiments were conducted in human liver tissues and cell culture (HepG2). The promoter and exon 1 of CES1 were sequenced by Sanger and Ion Torrent sequencing to identify gene translocations. The effects of CES1 5'UTRs on mRNA and protein expression were assessed by quantitative real-time PCR, allelic ratio mRNA analysis by primer extension (SNaPshot), quantitative targeted proteomics, and luciferase reporter gene assays. RESULTS: Sequencing of CES1 identified two translocations: first, CES1VAR (17% minor allele frequency) comprising the 5'UTR, exon 1, and part of intron 1. A second shorter translocation, CES1SVAR, was observed excluding exon 1 and intron 1 regions (<0.01% minor allele frequency). CES1VAR is associated with 2.6-fold decreased CES1 mRNA and approximately 1.35-fold lower allelic mRNA. Luciferase reporter constructs showed that CES1VAR decreases luciferase activity 1.5-fold, whereas CES1SVAR slightly increases activity. CES1VAR was not associated with CES1 protein expression or metabolism of the CES1 substrates enalapril, clopidogrel, or methylphenidate in the liver. CONCLUSION: The frequent translocation variant CES1VAR reduces mRNA expression of CES1 in the liver by approximately 30%, but protein expression and metabolizing activity in the liver were not detectably altered - possibly because of variable CES1 expression masking small allelic effects. Whether drug therapies are affected by CES1VAR will require further in-vivo studies.
        
Title: CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors Wang X, Wang G, Shi J, Aa JY, Comas R, Liang Y, Zhu HJ Ref: Pharmacogenomics J, 16:220, 2016 : PubMed
The aim of the study was to determine the effect of carboxylesterase 1 (CES1) genetic variation on the activation of angiotensin-converting enzyme inhibitor (ACEI) prodrugs. In vitro incubation study of human liver, intestine and kidney s9 fractions demonstrated that the ACEI prodrugs enalapril, ramipril, perindopril, moexipril and fosinopril are selectively activated by CES1 in the liver. The impact of CES1/CES1VAR and CES1P1/CES1P1VAR genotypes and diplotypes on CES1 expression and activity on enalapril activation was investigated in 102 normal human liver samples. Neither the genotypes nor the diplotypes affected hepatic CES1 expression and activity. Moreover, among several CES1 nonsynonymous variants studied in transfected cell lines, the G143E (rs71647871) was a loss-of-function variant for the activation of all ACEIs tested. The CES1 activity on enalapril activation in human livers with the 143G/E genotype was approximately one-third of that carrying the 143G/G. Thus, some functional CES1 genetic variants (for example, G143E) may impair ACEI activation, and consequently affect therapeutic outcomes of ACEI prodrugs.