p.D70G/A539T Asp70Gly/Ala539Thr (p.D98G/A567T Asp70Gly/Ala567Thr in primary sequence with 28 amino-acids signal peptide) A539T co appears with D70G natural mutation. K-variant and Atypical variant
Butyrylcholinesterase (BChE) deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the BCHE gene. Here, we report the characterization of four BCHE mutations associated with prolonged effect of suxamethonium (amino acid numbering based on the matured enzyme): p.20delValPheGlyGlyThrValThr, p.Leu88His, p.Ile140del and p.Arg386Cys. Expression of recombinant BCHE mutants, kinetic analysis and molecular dynamics were undertaken to understand how these mutations induce BChE deficiency. Three of the mutations studied (p.20delValPheGlyGlyThrValThr, p.Ile140del and p.Arg386Cys) lead to a "silent" BChE phenotype. Recombinant BCHE expression studies for these mutants revealed BChE activity levels comparable to untransfected cells. Only the last one (hBChE-L88H) presented BChE activity in the transfected cell culture medium. This BChE mutant (p.Leu88His) is associated with a lower k(cat) value compare to the wild-type enzyme. Molecular dynamics simulations analyses suggest that a destabilization of a structure implicated in enzyme activity (-loop) can explain the modification of the kinetic parameter of the mutated protein.
Butyrylcholinesterase (BChE) is a plasma enzyme that catalyzes the hydrolysis of choline esters, including the muscle-relaxant succinylcholine and mivacurium. Patients who present sustained neuromuscular blockade after using succinylcholine usually carry BChE variants with reduced enzyme activity or an acquired BChE deficiency. We report here the molecular basis of the BCHE gene underlying the slow catabolism of succinylcholine in a patient who underwent endoscopic nasal surgery. We measured the enzyme activity of BChE and extracted genomic DNA in order to study the promoter region and all exons of the BCHE gene of the patient, her parents and siblings. PCR products were sequenced and compared with reference sequences from GenBank. We detected that the patient and one of her brothers have two homozygous mutations: nt1615 GCA > ACA (Ala539Thr), responsible for the K variant, and nt209 GAT > GGT (Asp70Gly), which produces the atypical variant A. Her parents and two of her brothers were found to be heterozygous for the AK allele, and another brother is homozygous for the normal allele. Sequence analysis of exon 1 including 5'UTR showed that the proband and her brother are homozygous for -116GG. The AK/AK genotype is considered the most frequent in hereditary hypocholinesterasemia (44%). This work demonstrates the importance of defining the phenotype and genotype of the BCHE gene in patients who are subjected to neuromuscular block by succinylcholine, because of the risk of prolonged neuromuscular paralysis.
        
Title: Butyrylcholinesterase gene mutations in patients with prolonged apnea after succinylcholine for electroconvulsive therapy Mollerup HM, Gatke MR Ref: Acta Anaesthesiologica Scandinavica, 55:82, 2011 : PubMed
BACKGROUND: patients undergoing electroconvulsive therapy (ECT) often receive succinylcholine as part of the anesthetic procedure. The duration of action may be prolonged in patients with genetic variants of the butyrylcholinesterase enzyme (BChE), the most common being the K- and the A-variants. The aim of the study was to assess the clinical significance of genetic variants in butyrylcholinesterase gene (BCHE) in patients with a suspected prolonged duration of action of succinylcholine after ECT. METHODS: a total of 13 patients were referred to the Danish Cholinesterase Research Unit after ECT during 38 months. We determined the BChE activity and the BCHE genotype using molecular genetic methods, the duration of apnea, time to sufficient spontaneous ventilation and whether neuromuscular monitoring was used. The duration of apnea was compared with published data on normal subjects. RESULTS: in 11 patients, mutations were found in the BCHE gene, the K-variant being the most frequent. The duration of apnea was 5-15 min compared with 3-5.3 min from the literature. Severe distress was noted in the recovery phase in two patients. Neuromuscular monitoring was used in two patients. CONCLUSION: eleven of 13 patients with a prolonged duration of action of succinylcholine had mutations in BCHE, indicating that this is the possible reason for a prolonged period of apnea. We recommend objective neuromuscular monitoring during the first ECT.
Genomic DNA from two families exhibiting the K-variant phenotype of serum butyrylcholinesterase was amplified by PCR and sequenced to determine the molecular basis of this variant. The K-variant phenotype was found to be associated with a DNA transition from guanine to adenine at nucleotide 1615, which caused an amino acid change from alanine 539 to threonine (GCA----ACA; Ala539----Thr). There was a 30% reduction of serum butyrylcholinesterase activity associated with this mutation. Amplification and sequencing of DNA from a random sample of 47 unrelated people gave a frequency of .128 for the K-variant allele. Thus, 1 person in 63 should be homozygous for the K-variant, making the K-variant the most common butyrylcholinesterase variant. The K-variant mutation was also found to be present in 17 (89%) of 19 butyrylcholinesterase genes containing the point mutation which causes the atypical phenotype of butyrylcholinesterase (GAT----GGT; Asp70----Gly). The presence of the K-variant in the same molecule as the atypical variant does not contribute to the qualitative change in the atypical enzyme, but it most likely accounts for the approximately one-third reduction in Vmax of butyrylcholinesterase activity in atypical serum. Two additional point mutations located in noncoding regions of the gene were also observed to be in linkage disequilibrium with the K-variant mutation. As many as four different point mutations have been identified within a single butyrylcholinesterase gene. Inhibition tests of the enzyme in plasma are usually used to distinguish the K-variant from the usual enzyme when the former is present with the heterozygous atypical variant (AK phenotype vs. UA phenotype). Inhibition tests were performed on plasma enzyme from the four possible genotypic combinations of the heterozygous atypical mutation with or without the K-variant mutation on either allele; we found that the AK phenotype was caused by three genotypes (A/K, AK/K, and U/A) and that the UA phenotype was caused by two genotypes (U/A and U/AK).