Title: Mutation of acetylcholinesterase to enhance oxime-assisted catalytic turnover of methylphosphonates Kovarik Z, Radic Z, Berman HA, Taylor P Ref: Toxicology, 233:79, 2007 : PubMed
Selected mutagenesis of acetylcholinesterase (AChE; EC 3.1.1.7) may enable one to develop more effective scavenging agents in which AChE itself, in combination with an oxime, will complete a catalytic cycle of hydrolysis of the organophosphate by rapid conjugation followed by enhanced nucleophile-mediated hydrolysis of the phosphonyl enzyme conjugate. Through enlargement of the active site gorge of mouse AChE by mutations Y337A, F295L and F297I, we studied continuous enzymatic degradation of S(P)-cycloheptyl methylphosphonyl thiocholine (S(P)-CHMPTCh) in the presence of HI-6. Continuous hydrolysis of S(P)-CHMPTCh was measured spectrophotometrically from thiocholine released during hydrolysis with DTNB as the thiol reagent. The rates of hydrolysis expressed as moles of formed thiocholine per mole of enzyme per minute were 3.3, 0.69, 0.34 and 0.15min(-1) for F295L/Y337A, Y337A, F297I/Y337A and AChE wild-type, respectively. These rates did not depend on the initial S(P)-CHMPTCh concentration range employed. However, by increasing HI-6 concentrations, the rates approached a limiting value, indicating that oxime reactivation is the rate-limiting step in S(P)-CHMPTCh hydrolysis. Our results confirm that a mixture of a mutant enzyme and an oxime might serve as an in vivo catalytic scavenger of organophosphates.
        
Title: Active site mutant acetylcholinesterase interactions with 2-PAM, HI-6, and DDVP Kovarik Z, Ciban N, Radic Z, Simeon-Rudolf V, Taylor P Ref: Biochemical & Biophysical Research Communications, 342:973, 2006 : PubMed
We used mouse recombinant wild-type acetylcholinesterase (AChE; EC 3.1.1.7), butyrylcholinesterase (BChE; EC 3.1.1.8), and AChE mutants with mutations (Y337A, F295L, F297I, Y72N, Y124Q, and W286A) that resemble residues found at structurally equivalent positions in BChE, to find the basis for divergence between AChE and BChE in following reactions: reversible inhibition by two oximes, progressive inhibition by the organophosphorus compound DDVP, and oxime-assisted reactivation of the phosphorylated enzymes. The inhibition enzyme-oxime dissociation constants of AChE w.t. were 150 and 46 microM, of BChE 340 and 27 microM for 2-PAM and HI-6, respectively. Introduced mutations lowered oxime binding affinities for both oximes. DDVP progressively inhibited cholinesterases yielding symmetrical dimethylphosphorylated enzyme conjugates at rates between 104 and 105/min/M. A high extent of oxime-assisted reactivation of all conjugates was achieved, but rates by both oximes were up to 10 times slower for phosphorylated mutants than for AChE w.t.
E2020 (R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methyl)piperidine hydrochloride is a piperidine-based acetylcholinesterase (AChE) inhibitor that was approved for the treatment of Alzheimer's disease in the United States. Structure-activity studies of this class of inhibitors have indicated that both the benzoyl containing functionality and the N-benzylpiperidine moiety are the key features for binding and inhibition of AChE. In the present study, the interaction of E2020 with cholinesterases (ChEs) with known sequence differences, was examined in more detail by measuring the inhibition constants with Torpedo AChE, fetal bovine serum AChE, human butyrylcholinesterase (BChE), and equine BChE. The basis for particular residues conferring selectivity was then confirmed by using site-specific mutants of the implicated residue in two template enzymes. Differences in the reactivity of E2020 toward AChE and BChE (200- to 400-fold) show that residues at the peripheral anionic site such as Asp74(72), Tyr72(70), Tyr124(121), and Trp286(279) in mammalian AChE may be important in the binding of E2020 to AChE. Site-directed mutagenesis studies using mouse AChE showed that these residues contribute to the stabilization energy for the AChE-E2020 complex. However, replacement of Ala277(Trp279) with Trp in human BChE does not affect the binding of E2020 to BChE. Molecular modeling studies suggest that E2020 interacts with the active-site and the peripheral anionic site in AChE, but in the case of BChE, as the gorge is larger, E2020 cannot simultaneously interact at both sites. The observation that the KI value for mutant AChE in which Ala replaced Trp286 is similar to that for wild-type BChE, further confirms our hypothesis.
Acetylcholinesterase (AChE), a serine hydrolase, is potentially susceptible to inactivation by phenylmethylsulfonyl fluoride (PMSF) and benzenesulfonyl fluoride (BSF). Although BSF inhibits both mouse and Torpedo californica AChE, PMSF does not react measurably with the T. californica enzyme. To understand the residue changes responsible for the change in reactivity, we studied the inactivation of wild-type T. californica and mouse AChE and mutants of both by BSF and PMSF both in the presence and absence of substrate. The enzymes investigated were wild-type mouse AChE, wild-type T. californica AChE, wild-type mouse butyrylcholinesterase, mouse Y330F, Y330A, F288L, and F290I, and the double mutant T. californica F288L/F290V (all mutants given T. californica numbering). Inactivation rate constants for T. californica AChE confirmed previous reports that this enzyme is not inactivated by PMSF. Wild-type mouse AChE and mouse mutants Y330F and Y330A all had similar inactivation rate constants with PMSF, implying that the difference between mouse and T. californica AChE at position 330 is not responsible for their differing PMSF sensitivities. In addition, butyrylcholinesterase and mouse AChE mutants F288L and F290I had increased rate constants ( approximately 14 fold) over those of wild-type mouse AChE, indicating that these residues may be responsible for the increased sensitivity to inactivation by PMSF of butyrylcholinesterase. The double mutant T. californica AChE F288L/F290V had a rate constant nearly identical with the rate constant for the F288L and F290I mouse mutant AChEs, representing an increase of approximately 4000-fold over the T. californica wild-type enzyme. It remains unclear why these two positions have more importance for T. californica AChE than for mouse AChE.
        
Title: Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases Hosea NA, Berman HA, Taylor P Ref: Biochemistry, 34:11528, 1995 : PubMed
We have examined the specificity of planar carboxyl and tetrahedral phosphonyl esters for mouse cholinesterases and have delineated the orientation of these ligands in the enzyme active center. The approach involved altering acyl pocket dimensions by site-specific mutagenesis of two phenylalanines and varying ligand size and enantiomer presentation. Substrate catalysis rates by wild type acetylcholinesterase (AChE) of acetyl-, butyryl-, and benzoylthiocholine diminished with increasing size of the acyl moiety. In contrast, substitution of the acyl pocket phenylalanines giving the mutants F295L and F297I of AChE yielded more efficient catalysis of the larger substrates and a specificity approaching that of butyrylcholinesterase. Extension from planar substrates to enantiomerically pure organophosphonates allowed for an analysis of enantiomeric selectivity. We found that AChE reactions are 200-fold faster with the Sp than the Rp enantiomer of of cycloheptyl methylphosphonyl thiocholine. Upon the acyl pocket size being enlarged, the Rp enantiomer became more reactive while reaction with the Sp enantiomer was slightly reduced. In fact, the F297I mutant displayed inverted stereospecificity. A visual correlation with the kinetic data has been developed by docking the ligands in the active site. Upon placement of the phosphonyl oxygen in the oxyanion hole and the leaving group being directed out of the gorge, the Rp, but not the Sp, enantiomer engendered steric hindrance between the alkoxyl group and the acyl pocket. Replacing F297 with Ile accommodated the bulky alkoxyl group of the Rp isomer in the acyl pocket, allowing similar orientations of the phosphonyl oxygen and the leaving group to the Sp isomer.
        
Title: Organophosphate Specificity of Acyl Pocket Cholinesterase Mutants Pickering NA, Taylor P, Berman HA Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:227, 1995 : PubMed
Fasciculin, a 6750-Da peptide from the venom of Dendroaspis, is known to inhibit reversibly mammalian and fish acetylcholinesterases at picomolar concentrations, but is a relatively weak inhibitor of avian, reptile, and insect acetylcholinesterases and mammalian butyryl-cholinesterases. An examination of fasciculin association with several mutant forms of recombinant DNA-derived acetylcholinesterase from mouse shows that it interacts with a cluster of residues near the rim of the gorge on the enzyme. The aromatic residues, Trp286, Tyr72, and Tyr124, have the most marked influence on fasciculin binding, whereas Asp74, a charged residue in the vicinity of the binding site that affects the binding of low molecular weight inhibitors, has little influence on fasciculin binding. The 3 aromatic residues are unique to the susceptible acetylcholinesterases and, along with Asp74, constitute part of the peripheral anionic site. Fasciculin falls in the family of three-loop toxins that include the receptor blocking alpha-toxins and cardiotoxins. From this basic structural motif, a binding site has evolved on fasciculin to be highly specific for the peripheral site on acetylcholinesterase. Acetylthiocholine affects rates of fasciculin binding at concentrations causing substrate inhibition. In the case of the mutant cholinesterases where rates of fasciculin dissociation are more rapid, steady state kinetic parameters also show acetylthiocholine-fasciculin competition to be consistent with occupation at a peripheral or substrate inhibition site rather than the active center.
        
Title: Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors Radic Z, Pickering NA, Vellom DC, Camp S, Taylor P Ref: Biochemistry, 32:12074, 1993 : PubMed
By examining inhibitor interactions with single and multiple site-specific mutants of mouse acetylcholinesterase, we have identified three distinct domains in the cholinesterase structure that are responsible for conferring selectivity for acetyl- and butyrylcholinesterase inhibitors. The first domain is the most obvious; it defines the constraints on the acyl pocket dimensions where the side chains of F295 and F297 primarily outline this region in acetylcholinesterase. Replacement of these phenylalanine side chains with the aliphatic residues found in butyrylcholinesterase allows for the catalysis of larger substrates and accommodates butyrylcholinesterase-selective alkyl phosphates such as isoOMPA. Also, elements of substrate activation characteristic of butyrylcholinesterase are evident in the F297I mutant. Substitution of tyrosines for F295 and F297 further alters the catalytic constants. The second domain is found near the lip of the active center gorge defined by two tyrosines, Y72 and Y124, and by W286; this region appears to be critical for the selectivity of bisquaternary inhibitors, such as BW284C51. The third domain defines the site of choline binding. Herein, in addition to conserved E202 and W86, a critical tyrosine, Y337, found only in the acetylcholinesterases is responsible for sterically occluding the binding site for substituted tricyclic inhibitors such as ethopropazine. Analysis of a series of substituted acridines and phenothiazines defines the groups on the ligand and amino acid side chains in this site governing binding selectivity. Each of the three domains is defined by a cluster of aromatic residues. The two domains stabilizing the quaternary ammonium moieties each contain a negative charge, which contributes to the stabilization energy of the respective complexes.
Acetyl- and butyrylcholinesterase have 51-54% sequence identity in mammalian species; they exhibit distinct substrate and inhibitor specificities. The crystal structure of acetylcholinesterase enables one to predict folding of related esterases as well as assign residues responsible for differences in substrate specificity. These predictions were tested by expression of esterase chimeras and site-specific mutants using mouse acetylcholinesterase as a template. Chimeras of acetylcholinesterase in which the amino-terminal 174 and the carboxyl-terminal 88 amino acids have been converted to the butyrylcholinesterase sequences still exhibit acetyl-like substrate specificity. Four nonconserved amino acids which are within the central sequence and appear to surround the acyl pocket, F295, R296, F297, and V300, have been mutated alone and in combination to the corresponding residues found in butyrylcholinesterase, L286, S287, I288, and G291. The V300 and R296 mutants slightly enhance butyrylthiocholine hydrolysis while the F295 and F297 mutants, alone and in combination, confer butyrylcholinesterase character by enhancing activity to butyrylthiocholine, and diminishing activity to acetylthiocholine. The F297 mutation eliminates substrate inhibition. F295 and F297 may form a clamp around the acetoxy methyl group. They have distinctive roles in affecting catalysis of the two acylcholines and precisely control acyl ester specificity. Comparison of the susceptibilities of the chimeras and site-specific mutants to cholinesterase-specific inhibitors isoOMPA, ethopropazine, and BW284c51 suggests that inhibitor selectivity for isoOMPA is attributable to residues limiting the size of the acyl pocket, while residues in the amino-terminal domain presumably near the lip of the gorge affect BW284c51 selectivity.