Widespread resistance of insect pests to insecticides has been widely reported in China and there is consequently an urgent need to adjust pest management strategies appropriately. This requires detailed information on the extent and causes of resistance. The aim of the present study was to investigate levels of resistance to 5 insecticides among 12 strains of Culex tritaeniorhynchus, a major vector of Japanese encephalitis in China. Resistance to deltamethrin, beta-cypermethrin, permethrin, dichlorvos, and propoxur were measured using larval bioassays. The allelic frequency of knockdown resistance (kdr) and acetylcholinesterase (AChE) mutations were determined in all strains. Larval bioassay results indicated that the field strains collected from different sites were resistant to deltamethrin, beta-cypermethrin, permethrin, dichlorvos, and propoxur, with resistance ratio values ranging from 1.70- to 71.98-fold, 7.83- to 43.07-fold, 3.54- to 40.03-fold, 291.85- to 530.89-fold, and 51.32- to 108.83-fold, respectively. A polymerase chain reaction amplification of specific alleles method for individual was developed to detect genotypes of the AChE gene mutation F455W in Cx. tritaeniorhynchus. The frequency of the AChE gene mutation F455W was 100.00% in all strains, making this mutation of no value as a marker of resistance to organophosphorous and carbamate pesticides in Cx. tritaeniorhynchus in China. The kdr allele was present in all strains at frequencies of 10.00-29.55%. Regression analysis indicated a significant correlation between kdr allele frequencies and levels of resistance to deltamethrin, beta-cypermethrin, and permethrin. These results highlight the need to monitor and map insecticide resistance in Cx. tritaeniorhynchus and to adjust pesticide use to minimize the development of resistance in these mosquitoes.
        
Title: Malathion Resistance Status and Mutations in Acetylcholinesterase Gene (Ace) in Japanese Encephalitis and Filariasis Vectors from Endemic Area in India Misra BR, Gore M Ref: Journal of Medical Entomology, 52:442, 2015 : PubMed
Japanese encephalitis (JE) and lymphatic filariasis (LF) are endemic in estern part of Uttar Pradesh in India and transmitted by Culex mosquitoes (Diptera: Culicidae). JE vaccination and mass drug administration for JE and LF management is being undertaken respectively. In addition to this, indoor residual spraying and fogging are used for the control of mosquito vectors. Organophosphate resistance in mosquito is dependent on alteration in acetylcholinesterase (Ace) gene. Hence, it is important to evaluate organophosphate resistance in Culex tritaeniorhynchus Giles (JE vector) and Culex quinquefasciatus Say (LF vector). The current study showed the presence of resistant populations and F331W mutation in Cx. tritaeniorhynchus and G119S mutation in Cx. quinquefasciatus insensitive Ace genes. Resistant populations of these two vectors increase the chances of spreading of resistance in the natural population and may cause failure of intervention programs that include organophosphates against these two vectors in future.
        
Title: Different amino-acid substitutions confer insecticide resistance through acetylcholinesterase 1 insensitivity in Culex vishnui and Culex tritaeniorhynchus (Diptera: Culicidae) from China Alout H, Berthomieu A, Cui F, Tan Y, Berticat C, Qiao C, Weill M Ref: Journal of Medical Entomology, 44:463, 2007 : PubMed
Insecticide resistance owing to insensitive acetylcholinesterase (AChE)1 has been reported in several mosquito species, and only two mutations in the ace-1 gene have been implicated in resistance: 119S and 331W substitutions. We analyzed the AChE1 resistance status of Culex vishnui (Theobald) and Culex tritaeniorhynchus Giles sampled in various regions of China. These two species displayed distinct mutations leading to AChE1 insensitivity; the 119S substitution in resistant C. vishnui mosquitoes and the 331W substitution in resistant C. tritaeniorhynchus. A biochemical test was validated to detect the 331W mutation in field samples. The comparison of the recombinant G119S and 331W mutant proteins produced in vitro with the AChE1 extracted from resistant mosquitoes indicated that the AChE1 insensitivity observed could be specifically attributed to these substitutions. Comparison of their biochemical characteristics indicated that the resistance conferred by these mutations depends on the insecticide used, regardless of its class. This resistance seemed to be fixed in the Cx. tritaeniorhynchus populations sampled in a 2000-km transect, suggesting a very high level of insecticide application or a low fitness cost associated with this 331W mutation.
        
Title: An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus Nabeshima T, Mori A, Kozaki T, Iwata Y, Hidoh O, Harada S, Kasai S, Severson DW, Kono Y, Tomita T Ref: Biochemical & Biophysical Research Communications, 313:794, 2004 : PubMed
A cDNA sequence encoding a Drosophila Ace-paralogous acetylcholinesterase (AChE) precursor of 701 amino acid residues was identified as the second AChE gene (Ace2) transcript from Culex tritaeniorhynchus. The Ace2 gene is tightly linked to organophosphorus insecticide (OP)-insensitivity of AChE on chromosome 2. The cDNA sequences were compared between an insecticide-susceptible strain and the resistant strain, TYM, that exhibits a 870-fold decrease in fenitroxon-sensitivity of AChE. Two amino acid substitutions were present in TYM mosquitoes. One is F455W whose homologous position in Torped AChE (Phe331) is located in the vicinity of the catalytic His in the acyl pocket of the active site gorge. The other substitution is located to a C-terminal Ile697 position that apparently seems to be excluded from the mature protein and is irrelevant to catalytic activity. The F455W replacement in the Ace2 gene is solely responsible for the insecticide-insensitivity of AChE in TYM mosquitoes.