Title: Active site mutant acetylcholinesterase interactions with 2-PAM, HI-6, and DDVP Kovarik Z, Ciban N, Radic Z, Simeon-Rudolf V, Taylor P Ref: Biochemical & Biophysical Research Communications, 342:973, 2006 : PubMed
We used mouse recombinant wild-type acetylcholinesterase (AChE; EC 3.1.1.7), butyrylcholinesterase (BChE; EC 3.1.1.8), and AChE mutants with mutations (Y337A, F295L, F297I, Y72N, Y124Q, and W286A) that resemble residues found at structurally equivalent positions in BChE, to find the basis for divergence between AChE and BChE in following reactions: reversible inhibition by two oximes, progressive inhibition by the organophosphorus compound DDVP, and oxime-assisted reactivation of the phosphorylated enzymes. The inhibition enzyme-oxime dissociation constants of AChE w.t. were 150 and 46 microM, of BChE 340 and 27 microM for 2-PAM and HI-6, respectively. Introduced mutations lowered oxime binding affinities for both oximes. DDVP progressively inhibited cholinesterases yielding symmetrical dimethylphosphorylated enzyme conjugates at rates between 104 and 105/min/M. A high extent of oxime-assisted reactivation of all conjugates was achieved, but rates by both oximes were up to 10 times slower for phosphorylated mutants than for AChE w.t.
E2020 (R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methyl)piperidine hydrochloride is a piperidine-based acetylcholinesterase (AChE) inhibitor that was approved for the treatment of Alzheimer's disease in the United States. Structure-activity studies of this class of inhibitors have indicated that both the benzoyl containing functionality and the N-benzylpiperidine moiety are the key features for binding and inhibition of AChE. In the present study, the interaction of E2020 with cholinesterases (ChEs) with known sequence differences, was examined in more detail by measuring the inhibition constants with Torpedo AChE, fetal bovine serum AChE, human butyrylcholinesterase (BChE), and equine BChE. The basis for particular residues conferring selectivity was then confirmed by using site-specific mutants of the implicated residue in two template enzymes. Differences in the reactivity of E2020 toward AChE and BChE (200- to 400-fold) show that residues at the peripheral anionic site such as Asp74(72), Tyr72(70), Tyr124(121), and Trp286(279) in mammalian AChE may be important in the binding of E2020 to AChE. Site-directed mutagenesis studies using mouse AChE showed that these residues contribute to the stabilization energy for the AChE-E2020 complex. However, replacement of Ala277(Trp279) with Trp in human BChE does not affect the binding of E2020 to BChE. Molecular modeling studies suggest that E2020 interacts with the active-site and the peripheral anionic site in AChE, but in the case of BChE, as the gorge is larger, E2020 cannot simultaneously interact at both sites. The observation that the KI value for mutant AChE in which Ala replaced Trp286 is similar to that for wild-type BChE, further confirms our hypothesis.
        
Title: Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline Kovarik Z, Radic Z, Grgas B, Skrinjaric-Spoljar M, Reiner E, Simeon-Rudolf V Ref: Biochimica & Biophysica Acta, 1433:261, 1999 : PubMed
In order to identify amino acids involved in the interaction of acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) with carbamates, the time course of inhibition of the recombinant mouse enzymes BChE wild-type (w.t.), AChE w.t. and of 11 site-directed AChE mutants by Ro 02-0683 and bambuterol was studied. In addition, the reversible inhibition of cholinesterases by terbutaline, the leaving group of bambuterol, was studied. The bimolecular rate constant of AChE w.t. inhibition was 6.8 times smaller by Ro 02-0683 and 16000 times smaller by bambuterol than that of BChE w.t. The two carbamates were equipotent BChE inhibitors. Replacement of tyrosine-337 in AChE with alanine (resembling the choline binding site of BChE) resulted in 630 times faster inhibition by bambuterol. The same replacement decreased the inhibition by Ro 02-0683 ten times. The difference in size of the choline binding site in the two w.t. enzymes appeared critical for the selectivity of bambuterol and terbutaline binding. Removal of the charge with the mutation D74N caused a reduction in the reaction rate constants for Ro 02-0683 and bambuterol. Substitution of tyrosine-124 with glutamine in the AChE peripheral site significantly increased the inhibition rate for both carbamates. Substitution of phenylalanine-297 with alanine in the AChE acyl pocket decreased the inhibition rate by Ro 02-0683. Computational docking of carbamates provided plausible orientations of the inhibitors inside the active site gorge of mouse AChE and human BChE, thus substantiating involvement of amino acid residues in the enzyme active sites critical for the carbamate binding as derived from kinetic studies.
        
Title: The influence of peripheral site ligands on the reaction of symmetric and chiral organophosphates with wildtype and mutant acetylcholinesterases Radic Z, Taylor P Ref: Chemico-Biological Interactions, 119-120:111, 1999 : PubMed
The rates of inhibition of mouse acetylcholinesterase (AChE) (EC 3.1.1.7) by paraoxon, haloxon, DDVP, and enantiomers of neutral alkyl methylphosphonyl thioates and cationic alkyl methylphosphonyl thiocholines were measured in the presence and absence of AChE peripheral site inhibitors: gallamine, D-tubocurarine, propidium, atropine and derivatives of coumarin. All ligands, except the coumarins, at submillimolar concentrations enhanced the rates of inhibition by neutral organophosphorus compounds (OPs) while inhibition rates by cationic OPs were slowed down. When peripheral site ligand concentrations extended to millimolar, the extent of the enhancement decreased creating a bell shaped activation profile. Analysis of inhibition by DDVP and haloxon revealed that peripheral site inhibitors increased the second order reaction rates by increasing maximal rates of phosphylation.
        
Title: Reversible inhibition of acetylcholinesterase and butyrylcholinesterase by 4,4'-bipyridine and by a coumarin derivative Simeon-Rudolf V, Kovarik Z, Radic Z, Reiner E Ref: Chemico-Biological Interactions, 119-120:119, 1999 : PubMed
Inhibition of recombinant mouse wild type AChE (EC 3.1.1.7) and BChE (EC 3.1.1.8), and AChE peripheral site-directed mutants and human serum BChE variants by 4,4'-bipyridine (4,4'-BP) and the coumarin derivative 3-chloro-7-hydroxy-4-methylcoumarin (CHMC) was studied. The enzyme activity was measured with acetylthiocholine as substrate. Enzyme-inhibitor dissociation constants for the catalytic and peripheral sites were evaluated from the apparent dissociation constants as a function of the substrate concentration. Inhibition by 4,4'-BP of AChE, BChE and the AChE mutant Y72N/Y124Q/W286A, was consistent with inhibitor binding to both catalytic and peripheral sites. The dissociation constants for the peripheral site were about 3.5-times higher than for the catalytic site. The competition between CHMC and substrate displayed two binding sites on the AChE mutants Y72N, Y124Q, W286A and W286R, and on the atypical and fluoride-resistant BChE variants. The dissociation constants for the peripheral site were on average two-times higher than for the catalytic site. CHMC displayed binding only to the catalytic site of Y72N/Y124Q/W286A mutant and only to the peripheral site of w.t. AChE and the human usual BChE. Modelling of the 4,4'-BP and CHMC binding to wild type mouse AChE substantiated the difference between the inhibitors in their mode of binding which was revealed in the kinetic studies.