E2020 (R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methyl)piperidine hydrochloride is a piperidine-based acetylcholinesterase (AChE) inhibitor that was approved for the treatment of Alzheimer's disease in the United States. Structure-activity studies of this class of inhibitors have indicated that both the benzoyl containing functionality and the N-benzylpiperidine moiety are the key features for binding and inhibition of AChE. In the present study, the interaction of E2020 with cholinesterases (ChEs) with known sequence differences, was examined in more detail by measuring the inhibition constants with Torpedo AChE, fetal bovine serum AChE, human butyrylcholinesterase (BChE), and equine BChE. The basis for particular residues conferring selectivity was then confirmed by using site-specific mutants of the implicated residue in two template enzymes. Differences in the reactivity of E2020 toward AChE and BChE (200- to 400-fold) show that residues at the peripheral anionic site such as Asp74(72), Tyr72(70), Tyr124(121), and Trp286(279) in mammalian AChE may be important in the binding of E2020 to AChE. Site-directed mutagenesis studies using mouse AChE showed that these residues contribute to the stabilization energy for the AChE-E2020 complex. However, replacement of Ala277(Trp279) with Trp in human BChE does not affect the binding of E2020 to BChE. Molecular modeling studies suggest that E2020 interacts with the active-site and the peripheral anionic site in AChE, but in the case of BChE, as the gorge is larger, E2020 cannot simultaneously interact at both sites. The observation that the KI value for mutant AChE in which Ala replaced Trp286 is similar to that for wild-type BChE, further confirms our hypothesis.
        
Title: Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline Kovarik Z, Radic Z, Grgas B, Skrinjaric-Spoljar M, Reiner E, Simeon-Rudolf V Ref: Biochimica & Biophysica Acta, 1433:261, 1999 : PubMed
In order to identify amino acids involved in the interaction of acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) with carbamates, the time course of inhibition of the recombinant mouse enzymes BChE wild-type (w.t.), AChE w.t. and of 11 site-directed AChE mutants by Ro 02-0683 and bambuterol was studied. In addition, the reversible inhibition of cholinesterases by terbutaline, the leaving group of bambuterol, was studied. The bimolecular rate constant of AChE w.t. inhibition was 6.8 times smaller by Ro 02-0683 and 16000 times smaller by bambuterol than that of BChE w.t. The two carbamates were equipotent BChE inhibitors. Replacement of tyrosine-337 in AChE with alanine (resembling the choline binding site of BChE) resulted in 630 times faster inhibition by bambuterol. The same replacement decreased the inhibition by Ro 02-0683 ten times. The difference in size of the choline binding site in the two w.t. enzymes appeared critical for the selectivity of bambuterol and terbutaline binding. Removal of the charge with the mutation D74N caused a reduction in the reaction rate constants for Ro 02-0683 and bambuterol. Substitution of tyrosine-124 with glutamine in the AChE peripheral site significantly increased the inhibition rate for both carbamates. Substitution of phenylalanine-297 with alanine in the AChE acyl pocket decreased the inhibition rate by Ro 02-0683. Computational docking of carbamates provided plausible orientations of the inhibitors inside the active site gorge of mouse AChE and human BChE, thus substantiating involvement of amino acid residues in the enzyme active sites critical for the carbamate binding as derived from kinetic studies.
Fasciculin, a 6750-Da peptide from the venom of Dendroaspis, is known to inhibit reversibly mammalian and fish acetylcholinesterases at picomolar concentrations, but is a relatively weak inhibitor of avian, reptile, and insect acetylcholinesterases and mammalian butyryl-cholinesterases. An examination of fasciculin association with several mutant forms of recombinant DNA-derived acetylcholinesterase from mouse shows that it interacts with a cluster of residues near the rim of the gorge on the enzyme. The aromatic residues, Trp286, Tyr72, and Tyr124, have the most marked influence on fasciculin binding, whereas Asp74, a charged residue in the vicinity of the binding site that affects the binding of low molecular weight inhibitors, has little influence on fasciculin binding. The 3 aromatic residues are unique to the susceptible acetylcholinesterases and, along with Asp74, constitute part of the peripheral anionic site. Fasciculin falls in the family of three-loop toxins that include the receptor blocking alpha-toxins and cardiotoxins. From this basic structural motif, a binding site has evolved on fasciculin to be highly specific for the peripheral site on acetylcholinesterase. Acetylthiocholine affects rates of fasciculin binding at concentrations causing substrate inhibition. In the case of the mutant cholinesterases where rates of fasciculin dissociation are more rapid, steady state kinetic parameters also show acetylthiocholine-fasciculin competition to be consistent with occupation at a peripheral or substrate inhibition site rather than the active center.
        
Title: Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors Radic Z, Pickering NA, Vellom DC, Camp S, Taylor P Ref: Biochemistry, 32:12074, 1993 : PubMed
By examining inhibitor interactions with single and multiple site-specific mutants of mouse acetylcholinesterase, we have identified three distinct domains in the cholinesterase structure that are responsible for conferring selectivity for acetyl- and butyrylcholinesterase inhibitors. The first domain is the most obvious; it defines the constraints on the acyl pocket dimensions where the side chains of F295 and F297 primarily outline this region in acetylcholinesterase. Replacement of these phenylalanine side chains with the aliphatic residues found in butyrylcholinesterase allows for the catalysis of larger substrates and accommodates butyrylcholinesterase-selective alkyl phosphates such as isoOMPA. Also, elements of substrate activation characteristic of butyrylcholinesterase are evident in the F297I mutant. Substitution of tyrosines for F295 and F297 further alters the catalytic constants. The second domain is found near the lip of the active center gorge defined by two tyrosines, Y72 and Y124, and by W286; this region appears to be critical for the selectivity of bisquaternary inhibitors, such as BW284C51. The third domain defines the site of choline binding. Herein, in addition to conserved E202 and W86, a critical tyrosine, Y337, found only in the acetylcholinesterases is responsible for sterically occluding the binding site for substituted tricyclic inhibitors such as ethopropazine. Analysis of a series of substituted acridines and phenothiazines defines the groups on the ligand and amino acid side chains in this site governing binding selectivity. Each of the three domains is defined by a cluster of aromatic residues. The two domains stabilizing the quaternary ammonium moieties each contain a negative charge, which contributes to the stabilization energy of the respective complexes.