Paper Report for: Voss_2019_J.Struct.Biol_208_107390
Reference
Title: Arabidopsis immunity regulator EDS1 in a PAD4/SAG101-unbound form is a monomer with an inherently inactive conformation Voss M, Toelzer C, Bhandari DD, Parker JE, Niefind K Ref: J Struct Biol, 208:107390, 2019 : PubMed
In plant innate immunity, enhanced disease susceptibility 1 (EDS1) integrates all pathogen-induced signals transmitted by TIR-type NLR receptors. Driven by an N-terminal alpha/beta-hydrolase-fold domain with a protruding interaction helix, EDS1 assembles with two homologs, phytoalexin-deficient 4 (PAD4) and senescence-associated gene 101 (SAG101). The resulting heterodimers are critical for EDS1 function and structurally well characterized. Here, we resolve solution and crystal structures of unbound Arabidopsis thaliana EDS1 (AtEDS1) using nanobodies for crystallization. These structures, together with gel filtration and immunoprecipitation data, show that PAD4/SAG101-unbound AtEDS1 is stable as a monomer and does not form the homodimers recorded in public databases. Its PAD4/SAG101 anchoring helix is disordered unless engaged in protein/protein interactions. As in the complex with SAG101, monomeric AtEDS1 has a substrate-inaccessible esterase triad with a blocked oxyanion hole and without space for a covalent acyl intermediate. These new structures suggest that the AtEDS1 monomer represents an inactive or pre-activated ground state.
Voss M, Toelzer C, Bhandari DD, Parker JE, Niefind K (2019) Arabidopsis immunity regulator EDS1 in a PAD4/SAG101-unbound form is a monomer with an inherently inactive conformation J Struct Biol208: 107390
Voss M, Toelzer C, Bhandari DD, Parker JE, Niefind K (2019) J Struct Biol208: 107390