Epigallocatechin Gallate is a phenolic antioxidant found in a number of plants such as green and black tea (the Most Abundant Catechin in Green Tea). It inhibits cellular oxidation and prevents free radical damage to cells. It is under study as a potential cancer chemopreventive agent. (NCI) One Hydroxy more than Epicatechin-gallate
23 moreTitle: Structural characterization and antioxidant property of enzymatic-transesterification derivatives of (-)-epigallocatechin-3-O-gallate and vinyl laurate Jiang C, Wang L, Huang X, Zhu S, Ma C, Wang H Ref: J Food Sci, :, 2021 : PubMed
(-)-Epigallocatechin-3-O-gallate(EGCG) was enzymatically modified to enhance the lipophilicity and the antioxidant property. The determination of optimal reaction conditions are as follows: Lipase DF "Amano" 15 and acetone were used as catalyst and solvent, respectively. Equal molar of EGCG and vinyl laurate (1:1); lipase addition of 6.0% (w/w of total substrates); reaction temperature of 50 degreesC and reaction time of 96 h, which obtained the conversion rate of EGCG at 80.1%. The structure of EGCG lauroyl derivatives were 5''-O-lauroyl-EGCG, 3'',5''-2-O-lauroyl-EGCG, and 5',3'',5''-3-O-lauroyl-EGCG, identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR). Compared with the logP of precursor EGCG (0.69 +/- 0.03), the logP of EGCG lauroyl derivatives was 1.37 +/- 0.19, 2.27 +/- 0.33, and 3.28 +/- 0.37, increasing by 0.98, 2.28, and 3.75 times, respectively (p < 0.05), suggesting the grafted fatty acid chains make EGCG derivatives more lipophilic, and the lipid solubility gradually increased as the number of substituents increased. Furthermore, EGCG lauroyl derivatives had excellent lipid oxidation than that of EGCG. The POVs (peroxide values) of soybean oil with mono-, di-, tri-lauroyl EGCG were significantly reduced by 42%, 47%, and 57% than that of EGCG at 21 days, respectively, indicating the antioxidative inhibition of these derivatives decreased with the increase in substituents. This indicates that these derivatives have broad prospects of the antioxidant application while improving their solubility properties in lipophilic environments/high-fat food. Practical Application: The lipophilic esterification reaction of EGCG catalyzed by new catalytic lipase DF "Amano" 15 was carried out in a non-aqueous solvent.Various reaction factors on a higher conversion rate of EGCG lauroyl derivatives were evaluated. The lipophilicity and antioxidant properties of EGCG lauroyl derivatives were much excellent than that of parent EGCG.
        
Title: Degradation of epigallocatechin and epicatechin gallates by a novel tannase Tan(Hcw) from Herbaspirillum camelliae Lei J, Zhang Y, Ni X, Yu X, Wang X Ref: Microb Cell Fact, 20:197, 2021 : PubMed
BACKGROUND: Herbaspirillum camelliae is a gram-negative endophyte isolated from the tea plant. Both strains WT00C and WT00F were found to hydrolyze epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG) to release gallic acid (GA) and display tannase activity. However, no tannase gene was annotated in the genome of H. camelliae WT00C. RESULTS: The 39 kDa protein, annotated as the prolyl oligopeptidase in the NCBI database, was finally identified as a novel tannase. Its gene was cloned, and the enzyme was expressed in E. coli and purified to homogeneity. Moreover, enzymatic characterizations of this novel tannase named Tan(Hcw) were studied. Tan(Hcw) was a secretary enzyme with a Sec/SPI signal peptide of 48 amino acids at the N-terminus, and it catalyzed the degradation of tannin, methyl gallate (MG), epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG). The optimal temperature and pH of Tan(Hcw) activities were 30 degreesC, pH 6.0 for MG and 40 degreesC, pH 7.0 for both EGCG and ECG. Na(+), K(+) Mn(2+) and Triton-X100, Tween80 increased the enzyme activity of Tan(Hcw), whereas Zn(2+), Mg(2+), Hg(2+), EMSO, EDTA and beta-mercaptoethanol inhibited enzyme activity. K(m), k(cat) and k(cat) /K(m) of Tan(Hcw) were 0.30 mM, 37.84 s(-1), 130.67 mM(-1) s(-1) for EGCG, 0.33 mM, 34.59 s(-1), 105.01 mM(-1) s(-1) for ECG and 0.82 mM, 14.64 s(-1), 18.17 mM(-1) s(-1) for MG, respectively. CONCLUSION: A novel tannase Tan(Hcw) from H. camelliae has been identified and characterized. The biological properties of Tan(Hcw) suggest that it plays a crucial role in the specific colonization of H. camelliae in tea plants. Discovery of the tannase Tan(Hcw) in this study gives us a reasonable explanation for the host specificity of H. camelliae. In addition, studying the characteristics of this enzyme offers the possibility of further defining its potential in industrial application.
        
Title: Epigallocatechin-3-gallate improves chronic alcohol-induced cognitive dysfunction in rats by interfering with neuro-inflammatory, cell death and oxido-nitrosative cascade Uniyal A, Akhilesh, Tiwari V, Gadepalli A, Ummadisetty O Ref: Metabolic Brain Disease, :, 2021 : PubMed
Alcohol consumption for a longer period of time is linked with neuronal damage and an increase in inflammatory signaling resulting in cell death and dementia. Natural compounds are the focus of research due to their high efficacy and good safety profile. Here we have investigated the effect of chronic epigallocatechin-3-gallate (EGCG) administration against the alcohol-induced cognitive deficit rats. Male Wistar rats were exposed to the 12% ethanol (10 g/kg; oral gavage) for ten weeks and treated with EGCG (25, 50, and 100 mg/kg) for the same duration. Ethanol exposure led to the impaired spatial memory and learning in rats assessed using the Morris water maze and elevated plus-maze test. Further, we assessed the role of EGCG in mitigating the oxidative stress, neuroinflammatory and cell death signaling associated markers. Co-administration with EGCG significantly prevented all the behavioral, biochemical and molecular alterations in the different brain regions of ethanol-treated rats in a dose-dependent manner. EGCG suppressed the acetylcholinesterase activity, increased oxidative-nitrosative stress, cytokines (TNF-alpha and IL-1beta), NF-kappa beta and caspase-3 levels in both the cortex and hippocampus of ethanol-treated rats. Our preliminary study demonstrated that EGCG improves the oxido-nitrosative stress, inflammation, and cell death signaling associated with ethanol-induced cognitive dysfunction. This suggests the potential role of EGCG in mitigating the cognitive deficits associated with chronic alcohol consumption.
Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterase (CXE) in tannin-rich plants, are involved in the degalloylation of two important secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins (HTs). In this paper, we have made a new progress on the function of Camellia sinensis (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo experiments and promotes the synthesis of simple galloyl glucoses and flavan-3-ols gallates in plants. We gained the new understanding to the functions of CsTA through enzyme analysis, protein mass spectrometry identification, metabolic analysis of plants by genetic modification. Firstly, CsTA was proved that it is not only a hydrolase but also an acyltransferase. In the two-step covalent catalytic reaction, when CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate (EGCG) or 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG) into their degalloylated forms, a long-lived Ser159-linked galloyl-enzyme covalent intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptors (including water, methanol, flavan-3-ols and simple galloyl glucoses). Then, metabolic analysis suggested that transiently overexpression of TAs in young strawberry fruits, young leaves of tea plants and young leaves of Chinese bayberry actually increased the total content of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant tannase.
        
Title: Role of human AADAC on hydrolysis of eslicarbazepine acetate and effects of AADAC genetic polymorphisms on hydrolase activity Hirosawa K, Fukami T, Tashiro K, Sakai Y, Kisui F, Nakano M, Nakajima M Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, :, 2021 : PubMed
Human arylacetamide deacetylase (AADAC) plays a role in the detoxification or activation of drugs and is sometimes involved in the incidence of toxicity by catalyzing hydrolysis reactions. AADAC prefers compounds with relatively small acyl groups, such as acetyl groups. Eslicarbazepine acetate, an antiepileptic drug, is a prodrug rapidly hydrolyzed to eslicarbazepine. We sought to clarify whether AADAC might be responsible for the hydrolysis of eslicarbazepine acetate. Eslicarbazepine acetate was efficiently hydrolyzed by human intestinal and liver microsomes and recombinant human AADAC. The hydrolase activities in human intestinal and liver microsomes were inhibited by epigallocatechin gallate, a specific inhibitor of AADAC, by 82% and 88% of the control, respectively. The hydrolase activities in liver microsomes from 25 human livers were significantly correlated (r = 0.87, P < 0.001) with AADAC protein levels, suggesting that the enzyme AADAC is responsible for the hydrolysis of eslicarbazepine acetate. The effects of genetic polymorphisms of AADAC on eslicarbazepine acetate hydrolysis were examined by using the constructed recombinant AADAC variants with T74A, V172I, R248S, V281I, N366K, or X400Q. AADAC variants with R248S or X400Q showed lower activity than wild type (5% or 21%, respectively), whereas those with V172I showed higher activity than wild type (174%). Similar tendencies were observed in the other 4 substrates of AADAC; that is, p-nitrophenyl acetate, ketoconazole, phenacetin, and rifampicin. Collectively, we found that eslicarbazepine acetate is specifically and efficiently hydrolyzed by human AADAC, and several AADAC polymorphic alleles would be a factor affecting the enzyme activity and drug response. Significance Statement This is the first study to clarify that AADAC is responsible for the activation of eslicarbazepine acetate, an antiepileptic prodrug, to eslicarbazepine, an active form, in the human liver and intestines. In addition, we found that several AADAC polymorphic alleles would be a factor affecting the enzyme activity and drug response.
        
Title: Structural characterization and antioxidant property of enzymatic-transesterification derivatives of (-)-epigallocatechin-3-O-gallate and vinyl laurate Jiang C, Wang L, Huang X, Zhu S, Ma C, Wang H Ref: J Food Sci, :, 2021 : PubMed
(-)-Epigallocatechin-3-O-gallate(EGCG) was enzymatically modified to enhance the lipophilicity and the antioxidant property. The determination of optimal reaction conditions are as follows: Lipase DF "Amano" 15 and acetone were used as catalyst and solvent, respectively. Equal molar of EGCG and vinyl laurate (1:1); lipase addition of 6.0% (w/w of total substrates); reaction temperature of 50 degreesC and reaction time of 96 h, which obtained the conversion rate of EGCG at 80.1%. The structure of EGCG lauroyl derivatives were 5''-O-lauroyl-EGCG, 3'',5''-2-O-lauroyl-EGCG, and 5',3'',5''-3-O-lauroyl-EGCG, identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR). Compared with the logP of precursor EGCG (0.69 +/- 0.03), the logP of EGCG lauroyl derivatives was 1.37 +/- 0.19, 2.27 +/- 0.33, and 3.28 +/- 0.37, increasing by 0.98, 2.28, and 3.75 times, respectively (p < 0.05), suggesting the grafted fatty acid chains make EGCG derivatives more lipophilic, and the lipid solubility gradually increased as the number of substituents increased. Furthermore, EGCG lauroyl derivatives had excellent lipid oxidation than that of EGCG. The POVs (peroxide values) of soybean oil with mono-, di-, tri-lauroyl EGCG were significantly reduced by 42%, 47%, and 57% than that of EGCG at 21 days, respectively, indicating the antioxidative inhibition of these derivatives decreased with the increase in substituents. This indicates that these derivatives have broad prospects of the antioxidant application while improving their solubility properties in lipophilic environments/high-fat food. Practical Application: The lipophilic esterification reaction of EGCG catalyzed by new catalytic lipase DF "Amano" 15 was carried out in a non-aqueous solvent.Various reaction factors on a higher conversion rate of EGCG lauroyl derivatives were evaluated. The lipophilicity and antioxidant properties of EGCG lauroyl derivatives were much excellent than that of parent EGCG.
        
Title: Degradation of epigallocatechin and epicatechin gallates by a novel tannase Tan(Hcw) from Herbaspirillum camelliae Lei J, Zhang Y, Ni X, Yu X, Wang X Ref: Microb Cell Fact, 20:197, 2021 : PubMed
BACKGROUND: Herbaspirillum camelliae is a gram-negative endophyte isolated from the tea plant. Both strains WT00C and WT00F were found to hydrolyze epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG) to release gallic acid (GA) and display tannase activity. However, no tannase gene was annotated in the genome of H. camelliae WT00C. RESULTS: The 39 kDa protein, annotated as the prolyl oligopeptidase in the NCBI database, was finally identified as a novel tannase. Its gene was cloned, and the enzyme was expressed in E. coli and purified to homogeneity. Moreover, enzymatic characterizations of this novel tannase named Tan(Hcw) were studied. Tan(Hcw) was a secretary enzyme with a Sec/SPI signal peptide of 48 amino acids at the N-terminus, and it catalyzed the degradation of tannin, methyl gallate (MG), epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG). The optimal temperature and pH of Tan(Hcw) activities were 30 degreesC, pH 6.0 for MG and 40 degreesC, pH 7.0 for both EGCG and ECG. Na(+), K(+) Mn(2+) and Triton-X100, Tween80 increased the enzyme activity of Tan(Hcw), whereas Zn(2+), Mg(2+), Hg(2+), EMSO, EDTA and beta-mercaptoethanol inhibited enzyme activity. K(m), k(cat) and k(cat) /K(m) of Tan(Hcw) were 0.30 mM, 37.84 s(-1), 130.67 mM(-1) s(-1) for EGCG, 0.33 mM, 34.59 s(-1), 105.01 mM(-1) s(-1) for ECG and 0.82 mM, 14.64 s(-1), 18.17 mM(-1) s(-1) for MG, respectively. CONCLUSION: A novel tannase Tan(Hcw) from H. camelliae has been identified and characterized. The biological properties of Tan(Hcw) suggest that it plays a crucial role in the specific colonization of H. camelliae in tea plants. Discovery of the tannase Tan(Hcw) in this study gives us a reasonable explanation for the host specificity of H. camelliae. In addition, studying the characteristics of this enzyme offers the possibility of further defining its potential in industrial application.
        
Title: Epigallocatechin-3-Gallate Provides Protection Against Alzheimer's Disease-Induced Learning and Memory Impairments in Rats Nan S, Wang P, Zhang Y, Fan J Ref: Drug Des Devel Ther, 15:2013, 2021 : PubMed
PURPOSE: Recent evidence has highlighted the anti-inflammatory properties of the constituent of Green Tea Polyphenols (GTP), epigallocatechin-3-gallate (EGCG) which has been suggested to exert a neuroprotective effect on Alzheimer's disease (AD). The current study aimed to elucidate the effect of EGCG on memory function in rats with AD. METHODS: AD rat models were initially established through an injection with Abeta 25-35 solution, followed by gavage with EGCG at varying doses to determine the effect of EGCG on learning and cognitive deficits in AD. Morris water maze test was conducted to evaluate the spatial memory function of the rats. Immunohistochemistry and Western blot analysis were performed to identify Tau phosphorylation. The expression of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) mRNA and protein in rat hippocampus was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Acetylcholinesterase (AchE) activity, Abeta1-42 expression and Ach content were all detected using enzyme-linked immunosorbent assay (ELISA). RESULTS: EGCG intervention brought about a decrease in the escape latency period while increasing the time at the target quadrant among the AD rats. EGCG decreased the hyperphosphorylation of Tau in hippocampus. BACE1 expression and activity as well as the expression of Abeta1-42 were suppressed by EGCG. Moreover, EGCG promoted Ach content by diminishing the activity of AchE. CONCLUSION: The current study demonstrates that EGCG may diminish the hyperphosphorylation of the Tau protein, downregulate BACE1 and Abeta1-42 expression to improve the antioxidant system and learning and memory function of rats with AD.
        
Title: Therapeutic effects of biochanin A, phloretin, and epigallocatechin-3-gallate in reducing oxidative stress in arsenic-intoxicated mice Singh G, Thaker R, Sharma A, Parmar D Ref: Environ Sci Pollut Res Int, :, 2021 : PubMed
One of the most common toxicant prevailing in our environment is the arsenic. The present study is an attempt to investigate the effects of some of the common flavonoids, such as biochanin A (BCA), phloretin, and epigallocatechin-3-gallate (EGCG), on arsenic toxicity in the Swiss albino mice. For this purpose, mice were orally treated with sodium meta-arsenite (20 mg/kg bw/day), along with co-administration of BCA (50 mg/kg bw/day), phloretin (50 mg/kg bw/day), and EGCG (40 mg/kg bw/day) for the 2-week duration. All the mice were euthanized at the end of the treatment period, and the observations were made in the following parameters. Arsenic reduced the sperm motility as compared with the control (p < 0.05) and was restored back to the normal status with the flavonoids treatment significantly (p < 0.05). The arsenic concentrations in the kidney and liver tissues were found significantly reduced with all the flavonoids co-treatment (p < 0.001). There was a reduction in the levels of superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione S-transferase (GST) antioxidant markers, with the increased lipid peroxidation (LPO), protein carbonyl content (PCC), and catalase (CAT) levels in the arsenic-intoxicated mice performed in the different tissues. The biochemical homeostasis alterations were well correlated with the estimations of cholinesterase enzyme levels in the brain tissues (p < 0.05) along with DNA damage analysis (Comet) carried out in the blood cells (p < 0.05). These above results are well corroborated with the histopathological findings performed in the brain tissue, along with the increased upregulation seen in the Nrf2 signalling, with all the flavonoid co-treatment carried in the kidney tissue. The administration of BCA, phloretin, and EGCG, in a major way, reversed the alterations in the abovementioned parameters in the arsenic-intoxicated mice. Our findings revealed the beneficial effects of the flavonoids against the arsenic-induced toxicity, due to their ability to enhance the intracellular antioxidant response system by modulating the Nrf2 signaling pathway.
        
Title: Epigallocatechin-3-gallate improves chronic alcohol-induced cognitive dysfunction in rats by interfering with neuro-inflammatory, cell death and oxido-nitrosative cascade Uniyal A, Akhilesh, Tiwari V, Gadepalli A, Ummadisetty O Ref: Metabolic Brain Disease, :, 2021 : PubMed
Alcohol consumption for a longer period of time is linked with neuronal damage and an increase in inflammatory signaling resulting in cell death and dementia. Natural compounds are the focus of research due to their high efficacy and good safety profile. Here we have investigated the effect of chronic epigallocatechin-3-gallate (EGCG) administration against the alcohol-induced cognitive deficit rats. Male Wistar rats were exposed to the 12% ethanol (10 g/kg; oral gavage) for ten weeks and treated with EGCG (25, 50, and 100 mg/kg) for the same duration. Ethanol exposure led to the impaired spatial memory and learning in rats assessed using the Morris water maze and elevated plus-maze test. Further, we assessed the role of EGCG in mitigating the oxidative stress, neuroinflammatory and cell death signaling associated markers. Co-administration with EGCG significantly prevented all the behavioral, biochemical and molecular alterations in the different brain regions of ethanol-treated rats in a dose-dependent manner. EGCG suppressed the acetylcholinesterase activity, increased oxidative-nitrosative stress, cytokines (TNF-alpha and IL-1beta), NF-kappa beta and caspase-3 levels in both the cortex and hippocampus of ethanol-treated rats. Our preliminary study demonstrated that EGCG improves the oxido-nitrosative stress, inflammation, and cell death signaling associated with ethanol-induced cognitive dysfunction. This suggests the potential role of EGCG in mitigating the cognitive deficits associated with chronic alcohol consumption.
Tannins are important polyphenol compounds with different component proportions in different plant species. The plants in the Juglandaceae are rich in tannins, including condensed tannins and hydrolyzable tannins. In this study, we identified seven tannase genes (TAs) responsible for the tannin metabolism from walnut, pecan, and Chinese hickory, and three nut tree species in the Juglandaceae, which were divided into two groups. The phylogenetic and sequence analysis showed that TA genes and neighboring clade genes (TA-like genes) had similar sequences compared with other carboxylesterase genes, which may be the origin of TA genes produced by tandem repeat. TA genes also indicated higher expressions in leaf than other tissues and were quickly up-regulated at 3 h after leaf injury. During the development of the seed coat, the expression of the synthesis-related gene GGTs and the hydrolase gene TAs was continuously decreased, resulting in the decrease of tannin content in the dry sample of the seed coat of Chinese hickory. However, due to the reduction in water content during the ripening process, the tannin content in fresh sample increased, so the astringent taste was obvious at the mature stage. In addition, the CcGGTs' expression was higher than CiGGTs in the initiation of development, but CcTAs continued to be down-regulated while CiTA2a and CiTA2b were up-regulated, which may bring about the significant differences in tannin content and astringent taste between Chinese hickory and pecan. These results suggested the crucial role of TAs in wound stress of leaves and astringent ingredient accumulation in seed coats of two nut tree species in the Juglandaceae.
        
Title: Protective Role of Epigallocatechin Gallate in a Rat Model of Cisplatin-Induced Cerebral Inflammation and Oxidative Damage: Impact of Modulating NF-kappaB and Nrf2 Arafa MH, Atteia HH Ref: Neurotox Res, 37:380, 2020 : PubMed
Cisplatin is a widely used chemotherapeutic agent in treating various types of cancers. However, it can induce neurotoxicity and nephrotoxicity, limiting its dose and clinical use. Although previous studies indicated the direct link between cisplatin-induced central neurotoxicity and oxidative stress, the exact mechanism is not completely understood. Therefore, herein we investigated the effects of prophylactic and concurrent treatment with (-)-epigallocatechin-3-gallate (EGCG), a natural polyphenolic neuroprotective antioxidant, on cisplatin-induced brain toxicity in rats to delineate its molecular mechanism of action. We found that cisplatin initiated a cascade of genetic, biological, and histopathological changes in the brain cortex, inducing inflammatory cytokines, appearance of scattered inflammatory cells, nitro-oxidative stress, and apoptotic proteins in the cerebral cortex. However, EGCG not only protected against cisplatin-induced inflammatory burden but also ameliorated the induction of nitro-oxidative stress and apoptotic proteins triggered by cisplatin in the cerebral cortex of pre- and co-treated rats with respect to their unprotected counterparts. EGCG anti-inflammatory effect here may be attributed to the downregulation of nuclear factor kappa B (NF-kappaB). Additionally, this natural polyphenol significantly ameliorated cisplatin-elicited reduction in cerebral cortex brain-derived neurotrophic factor and acetylcholine esterase. Upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream heme oxygenase-1 (HO-1) by EGCG prophylactic and concurrent administration here seems also to play a key role in the protective impact of EGCG against cisplatin toxicity through enhancing total antioxidant capacity. Thus, EGCG can be used as a promising prophylactic adjuvant for preventing the development of brain inflammation and oxidative damage associated with cisplatin chemotherapy.
Plant tannins, including condensed tannins (CTs) and hydrolyzable tannins (HTs), are widely distributed in the plant kingdom. To date, tannase (TA) - is a type of tannin acyl-hydrolase hydrolyzing HTs, CT monomer gallates and depsides - has been reported in microbes only. Whether plants express TA remains unknown. Herein, we report plant TA genes. A native Camellia sinensis TA (CsTA) is identified from leaves. Six TAs are cloned from tea, strawberry (Fragariasxsananassa, Fa) and four other crops. Biochemical analysis shows that the native CsTA and six recombinant TAs hydrolyze tannin compounds, depsides and phenolic glycosides. Transcriptional and metabolic analyses reveal that the expression of CsTA is oppositely associated with the accumulation of galloylated catechins. Moreover, the transient overexpression and RNA interference of FaTA are positively associated with the accumulation of ellagitannins in strawberry fruit. Phylogenetic analysis across different kingdoms shows that 29 plant TA homologs are clustered as a plant-specific TA clade in class I carboxylesterases. Further analysis across the angiosperms reveals that these TA genes are dispersed in tannin-rich plants, which share a single phylogenetic origin c. 120 million yr ago. Plant TA is discovered for the first time in the plant kingdom and is shown to be valuable to improve tannin compositions in plants.
        
Title: Dipeptidyl Peptidase-4 Is a Target Protein of Epigallocatechin-3-Gallate Hou H, Wang Y, Li C, Wang J, Cao Y Ref: Biomed Res Int, 2020:5370759, 2020 : PubMed
Epigallocatechin-3-gallate (EGCG), a major active ingredient in green tea, has various health benefits. It affects glucose metabolism, but the mechanism is not well understood. This study aimed to identify targets of EGCG related to glucose metabolism. The core fragment of EGCG is a flavonoid. The flavonoid scaffold was used as a substructure to find proteins cocrystallized with flavonoids in the Protein Data Bank. The proteins identified were screened in PubMed for known relationships with diabetes. Dipeptidyl peptidase-4 (DPP4; PDB 5J3J) was identified following this approach. By molecular docking, the interactions of EGCG and DPP4 were assessed. To test the stability of the interactions between EGCG and DPP4, molecular dynamics simulation for 100 ns was performed using Desmond software. In vitro, the concentration of EGCG required to inhibit DPP4 activity by 50% (the IC50 value) was 28.42 muM. These data provide a theoretical basis for intervention in glucose metabolism with EGCG.
        
Title: Novel Hybrid Molecules Based on (-)-Epigallocatechin Gallate as Potent Anti-adipogenic Agents Jeong GH, Cho JH, Jo C, Park S, Kim SB, Kim TH Ref: Chem Pharm Bull (Tokyo), 68:1155, 2020 : PubMed
A series of novel (-)-epigallocatechin gallate (EGCG)-phloroglucinol hybrid compounds 1-4 has been successfully synthesized by employing a simple and efficient methodology using a dielectric barrier discharge (DBD) plasma irradiation. The new hybrid structures were determined by interpretation of spectroscopic data, with the absolute configurations being established by analysis of the circular dichroism (CD) spectra. The novel hybrids 1 and 2 showed highly improved anti-adipogenic potencies toward both pancreatic lipase and preadipocytes differentiation in 3T3-L1 compared to the original EGCG and phloroglucinol. A novel hybrid 1 represent an interesting subclass of anti-adipogenic candidates that need further research.
        
Title: Membrane order and ionic strength modulation of the inhibition of the membrane-bound acetylcholinesterase by epigallocatechin3gallate Salazar PB, Dupuy FG, de Athayde Moncorvo Collado A, Minahk CJ Ref: Biochimica & Biophysica Acta Biomembr, 1861:170, 2019 : PubMed
In the present work, we analyzed how external factors can modulate the efficiency of epigallocatechin3Ogallate (EGCG) inhibition of a membrane-bound isoform of the acetylcholinesterase. Increasing the ionic strength but not the osmolarity of the bulk medium proved to be an important factor. In addition, we verified a clear correlation between the inhibitory activity with the order degree of the membranes by using cholesterol-partially depleted red blood cell ghosts. These two factors i.e. high salt concentration in the bulk medium and less viscous membranes, allow a deeper insertion of the EGCG into the lipid bilayer, thus leading to a greater inhibition of AChE. As a corollary, we propose that any treatment or process that leads to a slight decrease in cholesterol content in the membranes can efficiently enhance the inhibitory activity of EGCG, which can have important consequences in all the pathologies where the inhibition of AChE is recommended.
        
Title: (-)Epigallocatechin-3-gallate attenuates anesthesiainduced memory deficit in young mice via modulation of nitric oxide expression Ding L, Gao X, Hu J, Yu S Ref: Mol Med Rep, 18:4813, 2018 : PubMed
(-)Epigallocatechin-3gallate- (EGCG) is a type of polyphenol monomer and is the predominant component of catechin compounds extractable from green tea. Previous studies have demonstrated that EGCG exhibits numerous bioactivities both in vitro and in vivo, including antitumor, antioxidant and antiinflammatory activities, as well as lowering blood lipid levels and protecting against radiation. The present study aimed to investigate whether administration of EGCG may attenuate anesthesiainduced memory deficit in young mice and to reveal the associated underlying mechanisms. The present study revealed that EGCG administration significantly attenuated memory deficit, oxidative stress and cell apoptosis exhibited by anesthesiainduced mice, as determined by Morris water maze testing and ELISA analysis. Furthermore, the results of ELISA and western blot analysis demonstrated that EGCG administration restored acetylcholinesterase activity and modulated the expression levels of neuronal nitric oxide synthase (nNOS), betaamyloid and amyloid precursor protein in anesthesiainduced mice. The present study also employed Larginine as an nNOS substrate and 7nitroindazole as an nNOS inhibitor, which were demonstrated to inhibit or potentiate the effects of EGCG, respectively, on anesthesiainduced memory deficit in mice. Therefore, the present study demonstrated that the administration of EGCG attenuated anesthesiainduced memory deficit in young mice, potentially via the modulation of nitric oxide expression and oxidative stress.
        
Title: Epigallocatechin-3-gallate attenuates cerebral cortex damage and promotes brain regeneration in acrylamide-treated rats He Y, Tan D, Mi Y, Zhou Q, Ji S Ref: Food Funct, 8:2275, 2017 : PubMed
Acrylamide (ACR) is a neurotoxic industrial chemical intermediate, which is also present in food and water. We investigated the neuroprotective effects of epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, on ACR-treated rat brain. Rats were pre-treated with EGCG for 4 d and then administered ACR and EGCG for 14 d. EGCG increased acetylcholinesterase (AChE) activity and the rate of Nissl-positive cells in ACR-treated rats. Senescence-associated beta-galactosidase (SA-beta-gal) staining indicated that EGCG attenuated ACR-induced senescence. Tumour necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) protein expression indicated that EGCG inhibited ACR-induced inflammation. In addition, immunohistochemical analysis of nestin and brain-derived neurotrophic factor (BDNF) revealed that EGCG promoted brain regeneration in ACR-treated rats. Altogether, our results suggest that EGCG can attenuate ACR-induced brain damage and promote regeneration in the cerebral cortex of rats. Therefore, we hypothesized that EGCG may alleviate ACR-related nerve injury.
        
Title: Effect of epigallocatechin-3-gallate on acrylamide-induced oxidative stress and apoptosis in PC12 cells He Y, Tan D, Mi Y, Bai B, Jiang D, Zhou X, Ji S Ref: Hum Exp Toxicol, 36:1087, 2017 : PubMed
Acrylamide (ACR) is a chemical intermediate utilized in industry. ACR is also formed during heating of foods containing carbohydrates and amino acids. Therefore, humans are widely exposed to ACR, and ACR neurotoxicity in humans is a significant public health issue attracting wide attention. In this study, we investigated the potential neuroprotective effects of epigallocatechin-3-gallate (EGCG), the most abundant polyphenolic compound in green tea, in PC12 cells treated with ACR. ACR-treated PC12 cells pretreated with various concentrations of EGCG (2.5, 5 and 10 muM) for 24 h had increased viability and acetylcholinesterase activity and reduced apoptosis and necrosis compared to cells exposed to ACR alone. EGCG reduced the expression of bax mRNA, decreased cytochrome c release, reduced intracellular calcium levels, inactivated caspase 3 and increased mitochondrial membrane potential, suggesting that EGCG prevents ACR-induced apoptosis through a mitochondrial-mediated pathway. In addition, EGCG inhibited the formation of reactive oxygen species and lipid peroxidation while enhancing superoxide dismutase activity and glutathione levels, thereby reducing oxidative stress. Our results indicate that pretreatment of PC12 cells with EGCG attenuates ACR-induced apoptosis by reducing oxidative stress. Therefore, drinking green tea may reduce nerve injury induced by ACR.
Spinal cord injury (SCI) is a debilitating condition which is characterized by an extended secondary injury due to the presence of inflammatory local milieu. Epigallocatechin gallate (EGCG) appears to possess strong neuroprotective properties. Here, we evaluated the beneficial effect of EGCG on recovery from SCI. Male Wistar rats were given either EGCG or saline directly to the injured spinal cord and thereafter a daily IP injection. Behavior recovery was monitored by BBB, plantar, rotarod and flat-beam tests. The levels of inflammatory cytokines were determined on days 1, 3, 7, 10 and 14 after SCI. Additionally, NF-kappaB pathway activity was evaluated. The results demonstrated that EGCG-treated rats displayed a superior behavioral performance in a flat beam test, higher axonal sprouting and positive remodelation of glial scar. Cytokine analysis revealed a reduction in IL-6, IL2, MIP1alpha and RANTES levels on days 1 and 3, and an upregulation of IL-4, IL-12p70 and TNFalpha 1 day following SCI in EGCG-treated rats. Treatment with EGCG was effective in decreasing the nuclear translocation of subunit p65 (RelA) of the NF-kappaB dimer, and therefore canonical NF-kappaB pathway attenuation. A significant increase in the gene expression of growth factors (FGF2 and VEGF), was noted in the spinal cord of EGCG-treated rats. Further, EGCG influenced expression of M1 and M2 macrophage markers. Our results have demonstrated a therapeutic value of EGCG in SCI, as observed by better behavioral performance measured by flat beam test, modulation of inflammatory cytokines and induction of higher axonal sprouting.
The activity of acetylcholinesterase (AChE) from human erythrocytes was tested in the presence of the phenolic compounds resveratrol and epigallocatechin-3-gallate (EGCG). Even though the stilbene barely changed this enzymatic activity, EGCG did inhibit AChE. Importantly, it preferentially acted on the membrane-bound enzyme rather than on its soluble form. Actually, it was shown that this flavonoid may bind to the red blood cell membrane surface, which may improve the interaction between EGCG and AChE. Therefore, caution should be taken when screening AChE inhibitors. In fact, testing compounds with the soluble form of the enzyme may underestimate the activity of some of these potential inhibitors, hence it would be advisable not to use them as a sole model system for screening. Moreover, erythrocyte AChE is proposed as a good model for these enzymatic assays. (c) 2016 BioFactors, 43(1):73-81, 2017.
        
Title: Fast identification of lipase inhibitors in oolong tea by using lipase functionalised Fe3O4 magnetic nanoparticles coupled with UPLC-MS/MS Zhu YT, Ren XY, Yuan L, Liu YM, Liang J, Liao X Ref: Food Chem, 173:521, 2015 : PubMed
Oolong tea is an important member in tea family, which claims for various health benefits such as preventing obesity and improving lipid metabolism. In this work, using pancreatic lipase (PL) functionalised magnetic nanoparticles (PL-MNPs) as solid phase extraction absorbent in combination with ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), we developed a method for rapid screening and identification of lipase inhibitors from oolong tea. Three PL ligands were selectively extracted and identified as (-)-epigallocatechin-3-O-gallate (EGCG), (-)-gallocatechin-3-O-gallate (GCG) and (-)-epicatechin-3-O-gallate (ECG). Their lipase inhibitory activities were significantly higher than those non-ligands. Structure-activity analysis revealed that the presence of a galloyl moiety in the structure was required for binding to PL-MNPs, and therefore, exhibiting a strong inhibition on the enzyme. Taking advantages of the specificity in enzyme binding and the convenience of magnetic separation, this method has great potential for fast screening of lipase inhibitors from natural resources.
        
Title: Molecular Interactions between (-)-Epigallocatechin Gallate Analogs and Pancreatic Lipase Wang S, Sun Z, Dong S, Liu Y Ref: PLoS ONE, 9:e111143, 2014 : PubMed
The molecular interactions between pancreatic lipase (PL) and four tea polyphenols (EGCG analogs), like (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin (EC), were studied from PL activity, conformation, kinetics and thermodynamics. It was observed that EGCG analogs inhibited PL activity, and their inhibitory rates decreased by the order of EGCG>GCG>ECG>EC. PL activity at first decreased rapidly and then slowly with the increase of EGCG analogs concentrations. alpha-Helix content of PL secondary structure decreased dependent on EGCG analogs concentration by the order of EGCG>GCG>ECG>EC. EGCG, ECG, and EC could quench PL fluorescence both dynamically and statically, while GCG only quenched statically. EGCG analogs would induce PL self-assembly into complexes and the hydrodynamic radii of the complexes possessed a close relationship with the inhibitory rates. Kinetics analysis showed that EGCG analogs non-competitively inhibited PL activity and did not bind to PL catalytic site. DSC measurement revealed that EGCG analogs decreased the transition midpoint temperature of PL enzyme, suggesting that these compounds reduced PL enzyme thermostability. In vitro renaturation through urea solution indicated that interactions between PL and EGCG analogs were weak and non-covalent.
Alzheimer's disease (AD) is the most prevalent form of dementia. Intracerebroventricular (ICV) infusion of streptozotocin (STZ) provides a relevant animal model of chronic brain dysfunction that is characterized by long-term and progressive deficits in learning, memory, and cognitive behavior, along with a permanent and ongoing cerebral energy deficit. Numerous studies on green tea epigallocatechin gallate (EGCG) demonstrate its beneficial effects on cognition and memory. As such, this study evaluated, for the first time, the effects of sub-chronic EGCG treatment in rats that were submitted to ICV infusion of STZ (3mg/kg). Male Wistar rats were divided into sham, STZ, sham+EGCG and STZ+EGCG groups. EGCG was administered at a dose of 10mg/kg/day for 4 weeks per gavage. Learning and memory was evaluated using Morris' Water Maze. Oxidative stress markers and involvement of the nitric oxide (NO) system, acetylcholinesterase activity (AChE) and glucose uptake were evaluated as well as glial parameters including S100B content and secretion and GFAP content. Our results show that EGCG was not able to modify glucose uptake and glutathione content, although cognitive deficit, S100B content and secretion, AChE activity, glutathione peroxidase activity, NO metabolites, and reactive oxygen species content were completely reversed by EGCG administration, confirming the neuroprotective potential of this compound. These findings contribute to the understanding of diseases accompanied by cognitive deficits and the STZ-model of dementia.
        
Title: (-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice Grove KA, Sae-tan S, Kennett MJ, Lambert JD Ref: Obesity (Silver Spring), 20:2311, 2012 : PubMed
Tea (Camellia sinensis, Theaceae) has been shown to have obesity preventive effects in laboratory studies. We hypothesized that dietary epigallocatechin-3-gallate (EGCG) could reverse metabolic syndrome in high fat-fed obese C57bl/6J mice, and that these effects were related to inhibition of pancreatic lipase (PL). Following treatment with 0.32% EGCG for 6 weeks, a 44% decrease in body weight (BW) gain in high fat-fed, obese mice (P < 0.01) was observed compared to controls. EGCG treatment increased fecal lipid content by 29.4% (P < 0.05) compared to high fat-fed control, whereas in vitro, EGCG dose-dependently inhibited PL (IC(50) = 7.5 micromol/l) in a noncompetitive manner with respect to substrate concentration. (-)-Epicatechin-3-gallate exhibited similar inhibitory activity, whereas the nonester-containing (-)-epigallocatechin did not. In conclusion, EGCG supplementation reduced final BW and BW gain in obese mice, and some of these effects may be due to inhibition of PL by EGCG.
        
Title: Impact of epigallo catechin-3-gallate on acetylcholine-acetylcholine esterase cycle in aged rat brain Srividhya R, Gayathri R, Kalaiselvi P Ref: Neurochem Int, 60:517, 2012 : PubMed
Neurotransmission plays an important role in communication of messages in brain. Cholinergic alterations during aging are associated with learning and memory. Neurotransmitters and enzymes that influence these neurotransmitters are significant in age-associated memory. Neurotransmitters like acetylcholine, serotonin and dopamine levels were studied. Kinetics of acetylcholine esterase was studied. There was an alteration in km and Vm values which was brought back to near-normalcy by EGCG. Behavioural changes were assessed by radial maze experiment. EGCG, a good neuroprotective drug proved to alleviate the behavioural alterations in aged rat brain. Acetylcholine esterase was partially purified from rat brain and assayed in vitro. Several modifiers like EGCG and donepezil were added in silico and the activity of the enzyme was calculated. EGCG increased the activity when compared to negative control, donepezil. Using bioinformatics tools EGCG, acetylcholine and donepezil were docked with acetylcholine esterase. EGCG formed a good docking-complex with the enzyme. Thus, it shall be hypothesized that the neuroprotective activity of EGCG might be due to its influence on cholinergic neurotransmission thereby improving the cognitive functions of the brain.
SCOPE: The aim of this research was to explore whether the tea-polyphenol (-)-epigallocatechin-3-gallate (EGCG) could be used as a potential agent for blocking smoking (nicotine, Nic)- or hormone (estradiol, E2)-induced breast cancer cell proliferation through inhibition of a common signaling pathway. METHODS AND RESULTS: To explore whether Nic (>0.1 muM, 24 h) and E2 (>1 nM, 24 h) significantly increased alpha9-nicotinic acetylcholine (alpha9-nicotinic acetylcholine receptor (nAChR)) mRNA and protein expression levels, real-time PCR and immunoblotting analysis experiments were performed in human breast cancer (MCF-7) cells. Luciferase promoter activity experiment was performed to test the alpha9-nAChR promoter activity affected by Nic, E2 or EGCG. The results indicate that treatment with EGCG (1 muM) profoundly decreases Nic- and E2-induced MCF-7 proliferation by down regulating alpha9-nAChR expression. The alpha9-nAChR promoter activity is significantly induced by 24-h treatment with Nic (10 muM) or E2 (10 nM) (>1.8 and approximately 2.3-fold, respectively) in MCF-7 cells. Pretreatment with EGCG eliminated the Nic- and E2-induced alpha9-nAChR promoter-dependent luciferase activity. We further demonstrate that combined treatment with EGCG profoundly inhibits [3H]-Nic/ alpha9-nAChR binding activity in breast cancer cells. CONCLUSIONS: We found that the EGCG could be used as an agent for blocking smoking (Nic)- or hormone (E2)-induced breast cancer cell proliferation by inhibiting of alpha9-nAChR signaling pathway. This study reveals the novel antitumor mechanisms of EGCG, and these results may have significant applications for chemopreventive purposes in human breast cancer.
        
Title: Epigallocatechin-3-gallate ameliorates alcohol-induced cognitive dysfunctions and apoptotic neurodegeneration in the developing rat brain Tiwari V, Kuhad A, Chopra K Ref: Int J Neuropsychopharmacol, 13:1053, 2010 : PubMed
Clinical and experimental evidence has demonstrated that ethanol is a teratogen, and its consumption during pregnancy induces harmful effects on the developing fetus that leads to mental retardation and long-term cognitive and behavioural deficits in offspring. The brain growth spurt period is highly sensitive to the neurotoxic effects of ethanol and it corresponds to the last trimester in humans and the first two postnatal weeks in rodents. This study was designed to evaluate the effect of epigallocatechin-3-gallate (EGCG) on alcohol-induced behavioural, biochemical and molecular changes in rat pups. Pups were administered alcohol (5 g/kg, 12% v/v) by intragastric intubation on postnatal days (PD) 7, 8, and 9. Ethanol-exposed pups showed impaired spatial navigation in the Morris water maze test and poor retention in the elevated plus maze task conducted from PD 24 to 28 which was coupled with enhanced acetylcholinesterase activity, increased oxidative-nitrosative stress, cytokines (TNF-alpha and IL-1beta), NF-kappaB and caspase-3 levels in both the cortex and hippocampus of pups sacrificed at PD 28. Apart from this, the mean weight of the whole brain, cortex and hippocampus of ethanol-treated pups was decreased by 34.48%, 39.09% and 34.30%, respectively. EGCG (50 and 100 mg/kg) significantly attenuated all the behavioural, biochemical and molecular changes in the different brain regions of ethanol-treated pups. The current finding demonstrates the activation of oxidative-nitrosative stress-mediated apoptotic signalling in cognitive deficits associated with fetal alcohol spectrum disorders (FASDs) and suggests that EGCG may have potential in prevention of the cognitive impairment in children with FASDs.
        
Title: Enhanced anti-influenza A virus activity of (-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives: effect of alkyl chain length Mori S, Miyake S, Kobe T, Nakaya T, Fuller SD, Kato N, Kaihatsu K Ref: Bioorganic & Medicinal Chemistry Lett, 18:4249, 2008 : PubMed
A series of fatty acid monoester derivatives of (-)-epigallocatechin-3-O-gallate (EGCG) were prepared by one-pot lipase-catalyzed transesterification. The introduction of long alkyl chains enhanced anti-influenza A/PR8/34 (H1N1) virus activity 24-fold relative to native EGCG.