Temocapril is a prodrug-type angiotensin-I converting enzyme (ACE) inhibitor. Temocapril can also be used in hemodialysis patients without risk of serious accumulation
Search PubMed for references concerning: Temocapril
Title: Prediction of human intestinal absorption of the prodrug temocapril by in situ single-pass perfusion using rat intestine with modified hydrolase activity Nozawa T, Imai T Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 39:1263, 2011 : PubMed
Intestinal absorption of temocapril, a prodrug of temocaprilat, was evaluated in an in situ rat jejunal perfusion model under various conditions of luminal pH and in the presence and absence of carboxylesterase-mediated hydrolysis. Temocapril was more easily taken up by mucosal cells at a luminal pH of 5.4 than at pH 6.4 or 7.4 and was extensively hydrolyzed to temocaprilat in mucosal cells. The hydrolysis was limited by the intrinsic clearance and the influx rate at luminal perfusate pHs of 5.4 and 7.4, respectively. Temocaprilat, derived from temocapril, was transported into both mesenteric vein and jejunal lumen according to pH partition theory. The net absorption of both temocapril and temocaprilat was highest at a luminal perfusate pH of 5.4. When both the luminal and venous fluid were at pH 7.4, temocaprilat was transported approximately 3-fold faster into the lumen than into the vein, due presumably to the greater surface area of the brush border membrane because of the presence of microvilli. Under carboxylesterase-inhibited conditions, the hydrolysis of temocapril was inhibited by only 50%. It is postulated that serine esterases located on the membranes of the epithelial cells were responsible for the residual hydrolysis. We have confirmed that temocapril is most easily absorbed in the proximal intestine after meals, due to prolongation of the gastric emptying time, the lower intraluminal pH caused by secretion of bile acid, and the interaction between serine esterases and the digesta.
        
Title: Evaluation of transport mechanism of prodrugs and parent drugs formed by intracellular metabolism in Caco-2 cells with modified carboxylesterase activity: temocapril as a model case Ohura K, Nozawa T, Murakami K, Imai T Ref: J Pharm Sci, 100:3985, 2011 : PubMed
The intestinal absorption mechanism of temocapril, an ester-type prodrug of temocaprilat, was evaluated using Caco-2 cell monolayers with or without active carboxylesterase (CES)-mediated hydrolysis. The inhibition of CES-mediated hydrolysis was achieved by pretreatment of the monolayers with bis-p-nitrophenyl phosphate (BNPP), which inhibited 94% of the total hydrolysis of temocapril in the Caco-2 cells. The remaining 6% hydrolysis was due to the presence of serine esterases, other than CES, on the cell membranes. Transport experiments under CES-inhibited conditions showed temocapril not to be a substrate for peptide transporter 1 (PEPT1) or organic anion transporting polypeptides (OATPs), but to be an inhibitor of PEPT1; P-glycoprotein (P-gp) and breast-cancer-resistant protein (BCRP) were responsible for the efflux of temocapril, which was mainly absorbed by passive diffusion at low apical pH. In Caco-2 cell monolayers with CES-mediated hydrolysis intact, temocaprilat derived from temocapril, was 2.5-fold more rapidly transported into the apical compartment than into the basolateral compartment due to the presence of microvilli on the apical membrane. In contrast, temocaprilat at low intracellular concentrations, was preferentially transported across the basolateral membrane under CES-inhibited conditions.
Temocapril is a prodrug whose hydrolysis by carboxylesterase 1 (CES1) yields the active ACE inhibitor temocaprilat. This molecular-dynamics (MD) study uses a resolved structure of the human CES1 (hCES1) to investigate some mechanistic details of temocapril hydrolysis. The ionization constants of temocapril (pK1 and pK3) and temocaprilat (pK1, pK2, and pK3) were determined experimentally and computationally using commercial algorithms. The constants so obtained were in good agreement and revealed that temocapril exists mainly in three ionic forms (a cation, a zwitterion, and an anion), whereas temocaprilat exists in four major ionic forms (a cation, a zwitterion, an anion, and a dianion). All these ionic forms were used as ligands in 5-ns MS simulations. While the cationic and zwitterionic forms of temocapril were involved in an ion-pair bond with Glu255 suggestive of an inhibitor behavior, the anionic form remained in a productive interaction with the catalytic center. As for temocaprilat, its cation appeared trapped by Glu255, while its zwitterion and anion made a slow departure from the catalytic site and a partial egress from the protein. Only its dianion was effectively removed from the catalytic site and attracted to the protein surface by Lys residues. A detailed mechanism of product egress emerges from the simulations.