Esterases receive special attention because their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others, remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps ranking (classifying) promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence datasets.
        
Title: A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase Eggert T, Pencreac'h G, Douchet I, Verger R, Jaeger KE Ref: European Journal of Biochemistry, 267:6459, 2000 : PubMed
A novel gene lipB, which encodes an extracellular lipolytic enzyme, was identified in the Bacillus subtilis genomic DNA sequence. We have cloned and overexpressed lipB in B. subtilis and Escherichia coli and have also purified the enzyme from a B. subtilis culture supernatant to electrophoretic homogeneity. Four different lipase assays were used to determine its catalytic activity: pH-stat, spectrophotometry, fluorimetry and the monomolecular film technique. LipB preferentially hydrolysed triacylglycerol-esters and p-nitrophenyl-esters of fatty acids with short chain lengths of <= 10 carbon atoms. Triolein, which is a typical substrate for true lipases, was not hydrolysed at all. These results led us to classify LipB as an esterase rather than a lipase. The catalytic triad of LipB consists of residues Ser78, Asp134, and His157 as demonstrated by amino-acid sequence alignments and site-directed mutagenesis. The nucleophile Ser78 is located in a lipase-specific consensus sequence, which is Ala-X-Ser-X-Gly for most Bacillus lipases. All other bacterial lipases contain a glycine residue instead of the alanine at position-2 with respect to the catalytic serine. We have investigated the role of this alanine residue by constructing LipB variant A76G, thereby restoring the lipase-specific consensus motif. When compared with LipB this variant showed a markedly reduced thermostability but an increased stability at pH 5-7. Determination of the specific activities of wild-type LipB and variant A76G using a monomolecular film of the substrate monoolein revealed an interesting result: the A76G substitution had converted the esterase LipB into a monoacylglycerol hydrolase.
        
Title: Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1 Kim HK, Park SY, Lee JK, Oh TK Ref: Biosci Biotechnol Biochem, 62:66, 1998 : PubMed
The gene coding for an extracellular lipase of Bacillus stearothermophilus L1 was cloned in Escherichia coli. Sequence analysis showed an open reading frame of 1254 bp, which encodes a polypeptide of 417 amino acid residues. The polypeptide was composed of a signal sequence (29 amino acids) and a mature protein of 388 amino acids. An alanine replaces the first glycine in the conserved pentapeptide (Gly-X-Ser-X-Gly) around the active site serine. The expressed lipase was purified by hydrophobic interaction and ion exchange chromatography using buffers containing 0.02% (v/v) Triton X-100. The lipase was most active at 60-65 degrees C and in alkaline conditions around pH 9-10. The lipase had highest activity toward p-nitrophenyl caprylate among the synthetic substrates and tripropionin among the triglycerides. It hydrolyzed beef tallow and palm oil more rapidly than olive oil at 50 degrees C.
Esterases receive special attention because their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others, remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps ranking (classifying) promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence datasets.
        
Title: Non-lipolytic and lipolytic sequence-related carboxylesterases: a comparative study of the structure-function relationships of rabbit liver esterase 1 and bovine pancreatic bile-salt-activated lipase Chahinian H, Fantini J, Garmy N, Manco G, Sarda L Ref: Biochimica & Biophysica Acta, 1801:1195, 2010 : PubMed
To differentiate esterases from lipases at the structure-function level, we have compared the kinetic properties and structural features of sequence-related esterase 1 from rabbit liver (rLE) and bile-salt-activated lipase from bovine pancreas (bBAL). In contrast to rLE, bBAL hydrolyses water-insoluble medium and long chain esters as vinyl laurate, trioctanoin and olive oil. Conversely, rLE and bBAL are both active on water-soluble short chain esters as vinyl acetate, vinyl propionate, vinyl butyrate, tripropionin, tributyrin and p-nitrophenyl butyrate. However, the enzymes show distinctive kinetic behaviours. rLE displays maximal activity at low substrate concentration, below the critical micelle concentration, whereas bBAL acts preferencially on emulsified esters, at concentration exceeding the solubility limit. Comparison of the 3D structures of rLE and bBAL shows, in particular, that the peptide loop at positions 116-123 in bBAL is deleted in rLE. This peptide segment interacts with a bile salt molecule thus inducing a conformational transition which gives access to the active site. Inhibition studies and manual docking of a bulky ester molecule as vinyl laurate in the catalytic pocket of rLE and bBAL show that the inability of the esterase to hydrolyse large water-insoluble esters is not due to steric hindrance. It is hypothesized that esterases lack specific hydrophobic structures involved both in the stabilization of the lipase-lipid adsorption complex at interfaces and in the spontaneous transfer of a single substrate molecule from interface to the catalytic site.
        
Title: A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase Eggert T, Pencreac'h G, Douchet I, Verger R, Jaeger KE Ref: European Journal of Biochemistry, 267:6459, 2000 : PubMed
A novel gene lipB, which encodes an extracellular lipolytic enzyme, was identified in the Bacillus subtilis genomic DNA sequence. We have cloned and overexpressed lipB in B. subtilis and Escherichia coli and have also purified the enzyme from a B. subtilis culture supernatant to electrophoretic homogeneity. Four different lipase assays were used to determine its catalytic activity: pH-stat, spectrophotometry, fluorimetry and the monomolecular film technique. LipB preferentially hydrolysed triacylglycerol-esters and p-nitrophenyl-esters of fatty acids with short chain lengths of <= 10 carbon atoms. Triolein, which is a typical substrate for true lipases, was not hydrolysed at all. These results led us to classify LipB as an esterase rather than a lipase. The catalytic triad of LipB consists of residues Ser78, Asp134, and His157 as demonstrated by amino-acid sequence alignments and site-directed mutagenesis. The nucleophile Ser78 is located in a lipase-specific consensus sequence, which is Ala-X-Ser-X-Gly for most Bacillus lipases. All other bacterial lipases contain a glycine residue instead of the alanine at position-2 with respect to the catalytic serine. We have investigated the role of this alanine residue by constructing LipB variant A76G, thereby restoring the lipase-specific consensus motif. When compared with LipB this variant showed a markedly reduced thermostability but an increased stability at pH 5-7. Determination of the specific activities of wild-type LipB and variant A76G using a monomolecular film of the substrate monoolein revealed an interesting result: the A76G substitution had converted the esterase LipB into a monoacylglycerol hydrolase.
        
Title: Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning Oh B, Kim H, Lee J, Kang S, Oh T Ref: FEMS Microbiology Letters, 179:385, 1999 : PubMed
Lipase of Staphylococcus haemolyticus L62 was purified from culture supernatant and its molecular mass was estimated to be 45 kDa by SDS-PAGE. Its optimum temperature and pH for the hydrolysis of olive oil was 28 degrees C and pH 8.5, respectively. The enzyme was stable up to 50 degrees C in the presence of Ca(2+)and over the pH range 5-11. It had high hydrolytic activity against tributyrin, tripropionin, and trimyristin among various triglycerides. The gene encoding the lipase was cloned in Escherichia coli. Sequence analysis showed an open reading frame of 2136 bp, which encodes a preproenzyme of 711 amino acids. The preproenzyme is composed of a signal peptide (60 aa), a pro-peptide (259 aa), and a mature enzyme (392 aa). The mature enzyme has 49-67% amino acid sequence homology with other staphylococcal lipases.
        
Title: Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1 Kim HK, Park SY, Lee JK, Oh TK Ref: Biosci Biotechnol Biochem, 62:66, 1998 : PubMed
The gene coding for an extracellular lipase of Bacillus stearothermophilus L1 was cloned in Escherichia coli. Sequence analysis showed an open reading frame of 1254 bp, which encodes a polypeptide of 417 amino acid residues. The polypeptide was composed of a signal sequence (29 amino acids) and a mature protein of 388 amino acids. An alanine replaces the first glycine in the conserved pentapeptide (Gly-X-Ser-X-Gly) around the active site serine. The expressed lipase was purified by hydrophobic interaction and ion exchange chromatography using buffers containing 0.02% (v/v) Triton X-100. The lipase was most active at 60-65 degrees C and in alkaline conditions around pH 9-10. The lipase had highest activity toward p-nitrophenyl caprylate among the synthetic substrates and tripropionin among the triglycerides. It hydrolyzed beef tallow and palm oil more rapidly than olive oil at 50 degrees C.