Tree Display

AceDB Schema

XML Display

Feedback

LongText Report for: Chambers_2013_Chem.Biol.Interact_203_135

Name Class
Chambers_2013_Chem.Biol.Interact_203_135
A critical need for combating the effects of organophosphate (OP) anticholinesterases, such as nerve agents, is the current lack of an effective oxime reactivator which can penetrate the blood-brain barrier (BBB), and therefore reactivate inhibited acetylcholinesterase (AChE) in the brain. Our laboratories have synthesized and have initiated testing of novel phenoxyalkyl pyridinium oximes (patent pending) that are more lipophilic than currently approved oximes. This is a preliminary report on these novel oximes which have been tested in vitro in rat brain homogenates with highly relevant surrogates for sarin (phthalimidyl isopropyl methylphosphonate; PIMP) and VX (nitrophenyl ethyl methylphosphonate; NEMP). The oximes demonstrated a range of 14-76% reactivation of rat brain AChE in vitro. An in vivo testing paradigm was developed in which the novel oxime was administered at the time of maximal brain AChE inhibition (about 80%) (1h) elicited by nitrophenyl isopropyl methylphosphonate (NIMP; sarin surrogate). This paradigm, with delayed administration of oxime to a time when brain AChE was starting to recover, was designed to minimize reactivation/reinhibition of peripheral AChE during the reactivation period which would decrease the availability of the surrogate for entry into the brain; this paradigm will allow proof of concept of BBB penetrability. The initial studies of these oximes in vivo with the sarin surrogate NIMP have indicated reactivation of up to about 25% at 30min after oxime administration and substantial attenuation of seizure behavior from some of the oximes. Therefore these novel oximes have considerable potential as brain-protecting therapeutics for anticholinesterases. 

Send your questions or comments to :
Mail to: Nicolas Lenfant, Thierry Hotelier, Yves Bourne, Pascale Marchot and Arnaud Chatonnet.
Please cite: Lenfant 2013 Nucleic.Acids.Res. or Marchot Chatonnet 2012 Prot.Pept Lett.
For technical information about these pages see:
ESTHER Home Page and ACEDB Home Page
AcePerl Lincoln Stein Home Page
webmaster

Acknowledgements and disclaimer