Tree Display

AceDB Schema

XML Display

Feedback

LongText Report for: Lillich_2021_J.Med.Chem_64_17259

Name Class
Lillich_2021_J.Med.Chem_64_17259
Polypharmaceutical regimens often impair treatment of patients with metabolic syndrome (MetS), a complex disease cluster, including obesity, hypertension, heart disease, and type II diabetes. Simultaneous targeting of soluble epoxide hydrolase (sEH) and peroxisome proliferator-activated receptor gamma (PPARgamma) synergistically counteracted MetS in various in vivo models, and dual sEH inhibitors/PPARgamma agonists hold great potential to reduce the problems associated with polypharmacy in the context of MetS. However, full activation of PPARgamma leads to fluid retention associated with edema and weight gain, while partial PPARgamma agonists do not have these drawbacks. In this study, we designed a dual partial PPARgamma agonist/sEH inhibitor using a structure-guided approach. Exhaustive structure-activity relationship studies lead to the successful optimization of the designed lead. Crystal structures of one representative compound with both targets revealed potential points for optimization. The optimized compounds exhibited favorable metabolic stability, toxicity, selectivity, and desirable activity in adipocytes and macrophages. 

Send your questions or comments to :
Mail to: Nicolas Lenfant, Thierry Hotelier, Yves Bourne, Pascale Marchot and Arnaud Chatonnet.
Please cite: Lenfant 2013 Nucleic.Acids.Res. or Marchot Chatonnet 2012 Prot.Pept Lett.
For technical information about these pages see:
ESTHER Home Page and ACEDB Home Page
AcePerl Lincoln Stein Home Page
webmaster

Acknowledgements and disclaimer