Tree Display

AceDB Schema

XML Display

Feedback

LongText Report for: Newcomb_1997_Proc.Natl.Acad.Sci.U.S.A_94_7464

Name Class
Newcomb_1997_Proc.Natl.Acad.Sci.U.S.A_94_7464
Resistance to organophosphorus (OP) insecticides is associated with decreased carboxylesterase activity in several insect species. It has been proposed that the resistance may be the result of a mutation in a carboxylesterase that simultaneously reduces its carboxylesterase activity and confers an OP hydrolase activity (the "mutant ali-esterase hypothesis"). In the sheep blowfly, Lucilia cuprina, the association is due to a change in a specific esterase isozyme, E3, which, in resistant flies, has a null phenotype on gels stained using standard carboxylesterase substrates. Here we show that an OP-resistant allele of the gene that encodes E3 differs at five amino acid replacement sites from a previously described OP-susceptible allele. Knowledge of the structure of a related enzyme (acetylcholinesterase) suggests that one of these substitutions (Gly137 --> Asp) lies within the active site of the enzyme. The occurrence of this substitution is completely correlated with resistance across 15 isogenic strains. In vitro expression of two natural and two synthetic chimeric alleles shows that the Asp137 substitution alone is responsible for both the loss of E3's carboxylesterase activity and the acquisition of a novel OP hydrolase activity. Modeling of Asp137 in the homologous position in acetylcholinesterase suggests that Asp137 may act as a base to orientate a water molecule in the appropriate position for hydrolysis of the phosphorylated enzyme intermediate.

Send your questions or comments to :
Mail to: Nicolas Lenfant, Thierry Hotelier, Yves Bourne, Pascale Marchot and Arnaud Chatonnet.
Please cite: Lenfant 2013 Nucleic.Acids.Res. or Marchot Chatonnet 2012 Prot.Pept Lett.
For technical information about these pages see:
ESTHER Home Page and ACEDB Home Page
AcePerl Lincoln Stein Home Page
webmaster

Acknowledgements and disclaimer