Tree Display

AceDB Schema

XML Display

Feedback

LongText Report for: Urbanek_2020_Biochim.Biophys.Acta.Proteins.Proteom_1868_140315

Name Class
Urbanek_2020_Biochim.Biophys.Acta.Proteins.Proteom_1868_140315
Application of polyester-degrading enzymes should be considered as an eco-friendly alternative to chemical recycling due to the huge plastic waste disposal nowadays. Many hydrolases from several fungi and bacteria have been discovered and successfully evaluated for their activity towards different aliphatic polyesters (PHA, PBS, PBSA, PCL, PLA), aromatic polyesters (PET, PBT, PMT) as well as their co-polyesters (PBST, PBAT, PBSTIL). This revision gives an up-to-date overview on the main biochemical features and biotechnological applications of those reported enzymes which are able to degrade polyester-based plastics, including different microbial polyester depolymerases, esterases, cutinase-like enzymes and lipases. Summarized information includes available protein sequences with the corresponding accession numbers deposited in NCBI server, 3D resolved structures, and data about optimal conditions for enzymatic activity and stability of many of these microbial enzymes that would be helpful for researchers in this topic. Although screening and identification of new native polyester hydrolases from microbial sources is undeniable according to literature, we briefly highlight the importance of the design of improved enzymes towards recalcitrant aromatic polyesters through different approaches that include site-directed mutagenesis and surface protein engineering. 

Send your questions or comments to :
Mail to: Nicolas Lenfant, Thierry Hotelier, Yves Bourne, Pascale Marchot and Arnaud Chatonnet.
Please cite: Lenfant 2013 Nucleic.Acids.Res. or Marchot Chatonnet 2012 Prot.Pept Lett.
For technical information about these pages see:
ESTHER Home Page and ACEDB Home Page
AcePerl Lincoln Stein Home Page
webmaster

Acknowledgements and disclaimer