Azam M

References (3)

Title : Genetic Association of Butyrylcholinesterase with Major Depressive Disorder - Awan_2021_Biochem.Genet__
Author(s) : Awan S , Hashmi AN , Taj R , Munir S , Habib R , Batool S , Azam M , Qamar R , Nurulain SM
Ref : Biochemical Genetics , : , 2021
Abstract : Major depressive disorder (MDD) is characterized as clinical depression, which primarily affects the mood and behaviour of an individual. In the present study butyrylcholinesterase (BChE), a co-regulatory cholinergic neurotransmitter enzyme implicated in several putative neuronal and non-neuronal physiological roles was investigated for its role in MDD. Eighty MDD patients and sixty-one healthy controls were recruited for the study. BChE activity was measured by Ellman's method using serum while DNA samples of the patients were genotyped for BCHE polymorphisms rs3495 (c.*189G > A) and rs1803274 (c.1699G > A) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and tetra-primer Amplification Refractory Mutation System- polymerase chain reaction (ARMS-PCR). The genotyping was further validated by Sanger Sequencing. Biochemical estimation of serum BChE levels revealed a statistically significant decrease of enzyme activity in MDD patients (69.96) as compared to healthy controls (90.97), which was independent of age and gender. BCHE single nucleotide polymorphism rs1803274 genotype GA was found to be associated with the disease under a dominant model (OR 2.32; 95% CI 1.09-4.96; p value = 0.025). Furthermore, risk allele-A frequency was higher in cases (p value = 0.013) than control. Carriers of rs1803274 GA genotype showed reduced mean BChE activity than wild-type allele GG homozygotes (p value = 0.040). Gender-based analysis revealed a protective role of rs3495 in females ((2) = 6.87, p value = 0.032, RM: OR 0.173, CI = 0.043-0.699 (p value = 0.017). In addition, rs1803274 risk allele-A was observed to be significantly higher in males ((2) = 4.258, p value = 0.039). In conclusion, the present study is indicative of a role of BChE in the pathophysiology of MDD where genetic polymorphisms were observed to effect BChE activity. Further replication studies in different ethnicities are recommended to validate the current observations.
ESTHER : Awan_2021_Biochem.Genet__
PubMedSearch : Awan_2021_Biochem.Genet__
PubMedID: 34414522

Title : Construction of Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds as Acetylcholinesterase Inhibitors - Islam_2021_ACS.Omega_6_31539
Author(s) : Islam MS , Al-Majid AM , Azam M , Verma VP , Barakat A , Haukka M , Elgazar AA , Mira A , Badria FA
Ref : ACS Omega , 6 :31539 , 2021
Abstract : Twenty-five new hits of spirooxindole analogs 8a-y engrafted with indole and pyrazole scaffolds were designed and constructed via a [3+2]cycloaddition (32CA) reaction starting from three components: new chalcone-based indole and pyrazole scaffolds 5a-d, substituted isatins 6a-c, and secondary amines 7a-d. The potency of the compounds were assessed in modulating cholinesterase (AChE) activity using Ellman's method. Compounds 8i and 8y showed the strongest acetylcholine esterase inhibition (AChEI) with IC(50) values of 24.1 and 27.8 microM, respectively. Molecular docking was used to study their interaction with the active site of hAChE.
ESTHER : Islam_2021_ACS.Omega_6_31539
PubMedSearch : Islam_2021_ACS.Omega_6_31539
PubMedID: 34869980

Title : Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders - Novarino_2014_Science_343_506
Author(s) : Novarino G , Fenstermaker AG , Zaki MS , Hofree M , Silhavy JL , Heiberg AD , Abdellateef M , Rosti B , Scott E , Mansour L , Masri A , Kayserili H , Al-Aama JY , Abdel-Salam GMH , Karminejad A , Kara M , Kara B , Bozorgmehri B , Ben-Omran T , Mojahedi F , El Din Mahmoud IG , Bouslam N , Bouhouche A , Benomar A , Hanein S , Raymond L , Forlani S , Mascaro M , Selim L , Shehata N , Al-Allawi N , Bindu PS , Azam M , Gunel M , Caglayan A , Bilguvar K , Tolun A , Issa MY , Schroth J , Spencer EG , Rosti RO , Akizu N , Vaux KK , Johansen A , Koh AA , Megahed H , Durr A , Brice A , Stevanin G , Gabriel SB , Ideker T , Gleeson JG
Ref : Science , 343 :506 , 2014
Abstract : Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.
ESTHER : Novarino_2014_Science_343_506
PubMedSearch : Novarino_2014_Science_343_506
PubMedID: 24482476