McHugh HT

References (1)

Title : Reaction of lecithin: cholesterol acyltransferase with micellar substrates. Effect of particle sizes - Jonas_1984_Biochim.Biophys.Acta_794_361
Author(s) : Jonas A , McHugh HT
Ref : Biochimica & Biophysica Acta , 794 :361 , 1984
Abstract : Micellar, discoidal complexes were prepared from L-alpha-dipalmitoylphosphatidylcholine (DPPC) or egg phosphatidylcholine (egg-PC), cholesterol, and human apolipoprotein A-I by the cholate dialysis method. Reaction mixtures containing from 70:7:1 to 500:50:1, PC/cholesterol/apolipoprotein A-I (mol/mol) were fractionated by gel-filtration into various complex fractions. The isolated DPPC complexes ranged in size from 103 to 380 A in diameter, and in composition from 70:7:1 to 470:45:1, PC/cholesterol/apolipoprotein A-I (mol/mol), respectively. In contrast, the isolated egg-PC complexes only ranged in size from 105 to 214 A in diameter, and in composition from 65:5:1 to 153:17:1, PC/cholesterol/apolipoprotein A-I (mol/mol), respectively. Measurements of fluorescence wavelength maxima and fluorescence polarization of tryptophan residues of apolipoprotein A-I, in both series of complexes, revealed uniform spectral properties for all the egg-PC containing complexes. The DPPC complexes, on the other hand, had maxima in the fluorescence parameters for complexes with diameters around 200 A. When reacted with purified human lecithin:cholesterol acyltransferase, either at constant apolipoprotein A-I or at constant lipid concentration, all egg-PC complexes had very similar reaction rates, but the DPPC complex series exhibited major differences in reactivity. Minima in reaction rates occurred for DPPC complexes around 200 A in diameter, and optimal rates were observed with the small discoidal complexes (110 A in diameter). These reaction rates correlate well with the apolipoprotein A-I fluorescence properties and indicate that the apolipoprotein structure, reflected at the interface with phosphatidylcholine, may be the most important factor in determining complex reactivity with lecithin:cholesterol acyltransferase.
ESTHER : Jonas_1984_Biochim.Biophys.Acta_794_361
PubMedSearch : Jonas_1984_Biochim.Biophys.Acta_794_361
PubMedID: 6430345