Pinheiro LC

References (2)

Title : Perinatal exposure to glyphosate-based herbicides induced neurodevelopmental behaviors impairments and increased oxidative stress in the prefrontal cortex and hippocampus in offspring - de Oliveira_2022_Int.J.Dev.Neurosci__
Author(s) : de Oliveira MAL , Rojas VCT , de Sa JC , de Novais CO , Silva MS , de Almeida Paula HA , Kirsten TB , Bernardi MM , Pinheiro LC , Giusti-Paiva A , Vilela FC
Ref : Int J Developmental Neuroscience , : , 2022
Abstract : Glyphosate is the organophosphate pesticide most widely used in the world. Recent studies correlate exposure to glyphosate and the emergence of neurodevelopmental disorders. Therefore, it was objective to propose a rat model of perinatal exposure to glyphosate-based herbicides (GBH) to study associated neurodevelopmental disorders. Behavioral aspects and brain pathways were assessed in the prepubertal phase. For this, maternal treatment occurred throughout the entire gestation period (from GD0) until weaning on postnatal day 22 (PND 22). Control group received oral gavage with 5 mL/kg of saline per day and GBH group received oral gavage with 50 mg/kg of GBH per day (n = 10 per group). Maternal behavior was evaluated in PND 2-6. Offspring were evaluated for quantification of ultrasonic vocalizations (PND 5); homing behavior test (PND 13); and hole board, social play behavior, open field, and object recognition tests (PND 28-32). Prefrontal cortex and hippocampus of the offspring were processed to evaluate oxidative stress. Maternal exposure to GBH impaired early social communication, olfactory discrimination, social play behavior, and the exploration of objects, in addition to increasing repetitive and stereotyped movements. GBH also increased oxidative stress. Therefore, perinatal GBH exposure induced behavioral and oxidative stress impairments in rats associated with neurodevelopmental disorders. The manifestations found in the offspring are in accordance with symptoms of autism spectrum disorder.
ESTHER : de Oliveira_2022_Int.J.Dev.Neurosci__
PubMedSearch : de Oliveira_2022_Int.J.Dev.Neurosci__
PubMedID: 35750327

Title : Synthesis and anti-HSV-1 evaluation of new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines - Bernardino_2012_Org.Med.Chem.Lett_2_3
Author(s) : Bernardino AM , Azevedo AR , Pinheiro LC , Borges JC , Paixao IC , Mesquita M , Souza TM , Dos Santos MS
Ref : Org Med Chem Lett , 2 :3 , 2012
Abstract : BACKGROUND: Herpes simplex virus type-1 (HSV-1) is the primary cause of facial lesions (mouth, lips, and eyes) in humans. The widespread use of acyclovir and nucleoside analogues has led to emergence of HSV strains that are resistant to these drugs. Recently, non-nucleoside anti-HSV compounds have received considerable attention. 1,6-Naphthyridines are a class of heterocyclic compounds that exhibit a broad spectrum of biological activities such as inhibitor of HIV-1 integrase, HCMV, FGF receptor-1 tyrosine kinase, and the enzyme acetylcholinesterase. We previously reported the synthesis, SAR studies, and evaluation anti-HSV-1 activity of 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines. In the course of our search for new 1,6-naphthyridines derivatives with potential activity against HSV-1, we have synthesized and evaluated new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines (1a-k) and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines (2a-c). RESULTS: A known synthetic approach was used for preparing new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines (1a-k) and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines (2a-c), starting from ethyl 4-chloro-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (7). All compounds were identified by FTIR, 1H NMR, and mass spectrometry. The antiviral effect on HSV-1 virus replication was determined. CONCLUSIONS: The compounds 1d, 1f, 1g, and 1h exhibited the highest anti-HSV-1 activity. In general, 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines were more effective inhibitors than their corresponding 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines. The compound 1h reduced the virus yield in 91% at 50 muM and exhibited a low cytotoxicity (CC50 600 muM).
ESTHER : Bernardino_2012_Org.Med.Chem.Lett_2_3
PubMedSearch : Bernardino_2012_Org.Med.Chem.Lett_2_3
PubMedID: 22373524