CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common leaf-specific fatty acids. Leaves of mature cgi-58 plants exhibited a marked increase in absolute triacylglycerol levels, more than 10-fold higher than in wild-type plants. Lipid levels in the oil-storing seeds of cgi-58 loss-of-function plants were unchanged, and unlike mutations in beta-oxidation, the cgi-58 seeds germinated and grew normally, requiring no rescue with sucrose. We conclude that the participation of CGI-58 in neutral lipid homeostasis of nonfat-storing tissues is similar, although not identical, between plant and animal species. This unique insight may have implications for designing a new generation of technologies that enhance the neutral lipid content and composition of crop plants.
        
Title: Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG Ref: Journal of Biological Chemistry, 279:3787, 2004 : PubMed
The principal lipids in animal cell lipid droplets are cholesterol, cholesterol ester, and triglyceride, but the protein composition of this compartment is largely unknown. Here we report on the proteomic analysis of lipid droplets. Using a combination of mass spectrometry and immunoblotting, we identify nearly 40 specifically associated proteins in droplets isolated from Chinese hamster ovary K2 cells grown in normal medium. The proteins fall in to five groups: structural molecules of the droplet-like adipose differentiation-related protein; multiple enzymes involved in the synthesis, storage, utilization, and degradation of cholesterol esters and triglycerides; multiple, different Rab GTPases known to be involved in regulating membrane traffic; signaling molecules such as p50RhoGAP; and a group of proteins that do not fit any classification but include proteins often found in caveolae/rafts such as caveolin-1 and 2 and flotillin-1. The proteome of droplets isolated from cells grown in the presence of oleate is largely the same except for an increase in the amount of adipose differentiation-related protein, caveolin-1, and a protein thought to be involved in phospholipid recycling called CGI-58. Based on the protein profile, the lipid droplet appears to be a complex, metabolically active organelle that is directly involved in membrane traffic and possibly phospholipid recycling. We propose the name adiposome for this organelle.