Title: Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea Sweigard JA, Chumley FG, Valent B Ref: Molecular & General Genetics, 232:174, 1992 : PubMed
A gene from Magnaporthe grisea was cloned using a cDNA clone of the Colletotrichum gloeosporioides cutinase gene as a heterologous probe; the nucleotide sequence of a 2 kb DNA segment containing the gene has been determined. DNA hybridization analysis shows that the M. grisea genome contains only one copy of this gene. The predicted polypeptide contains 228 amino acids and is homologous to the three previously characterized cutinases, showing 74% amino acid similarity to the cutinase of C. gloeosporioides. Comparison with previously determined cutinase sequences suggests that the gene contains two introns, 115 and 147 bp in length. The gene is expressed when cutin is the sole carbon source but not when the carbon source is cutin and glucose together or glucose alone. Levels of intracellular and extracellular cutinase activity increase in response to growth in the presence of cutin. The activity level is higher in a transformant containing multiple copies of the cloned gene than in the parent strain. Non-denaturing polyacrylamide gels stained for esterase activity show a single major band among intracellular and extracellular proteins from cutin-grown cultures that is not present among intracellular and extracellular proteins prepared from glucose-grown or carbon-starved cultures. This band stains more intensely in extracts from the multicopy transformant than in extracts from the parent strain. We conclude that the cloned DNA contains a M. grisea gene for cutinase, which we have named CUT1.
        
Title: Disruption of a Magnaporthe grisea cutinase gene Sweigard JA, Chumley FG, Valent B Ref: Molecular & General Genetics, 232:183, 1992 : PubMed
Using a one-step strategy to disrupt CUT1, a gene for cutinase, cut1- mutants were generated in two strains of Magnaporthe grisea. One strain, pathogenic on weeping lovegrass and barley and containing the arg3-12 mutation, was transformed with a disruption vector in which the Aspergillus nidulans ArgB+ gene was inserted into CUT1. Prototrophic transformants were screened by Southern hybridization, and 3 of 53 tested contained a disrupted CUT1 gene (cut1::ArgB+). A second strain, pathogenic on rice, was transformed with a disruption vector in which a gene for hyg B resistance was inserted into CUT1. Two of the 57 transformants screened by Southern hybridization contained a disrupted CUT1 gene (cut1::Hyg). CUT1 mRNA was not detectable in transformants that contained a disrupted gene. Transformants with a disrupted CUT1 gene failed to produce a cutin-inducible esterase that is normally detected by activity staining on non-denaturing polyacrylamide gels. Enzyme activity, measured either with tritiated cutin or with p-nitrophenyl butyrate as a substrate, was reduced but not eliminated in strains with a disrupted CUT1 gene. The infection efficiency of the cut1- disruption transformants was equal to that of the parent strains on all three host plants. Lesions produced by these mutants had an appearance and a sporulation rate similar to those produced by the parent strains. We conclude that the M. grisea CUT1 gene is not required for pathogenicity.