Conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD proteine from gene cluster (nic genes)), the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. Nfo is a close relative. Family of bacterial enzymes
2 moreTitle: Structural insights into the specific recognition of N-heterocycle biodenitrogenation-derived substrates by microbial amide hydrolases Wu G, Chen D, Tang H, Ren Y, Chen Q, Lv Y, Zhang Z, Zhao YL, Yao Y, Xu P Ref: Molecular Microbiology, 91:1009, 2014 : PubMed
N-heterocyclic compounds from industrial wastes, including nicotine, are environmental pollutants or toxicants responsible for a variety of health problems. Microbial biodegradation is an attractive strategy for the removal of N-heterocyclic pollutants, during which carbon-nitrogen bonds in N-heterocycles are converted to amide bonds and subsequently severed by amide hydrolases. Previous studies have failed to clarify the molecular mechanism through which amide hydrolases selectively recognize diverse amide substrates and complete the biodenitrogenation process. In this study, structural, computational and enzymatic analyses showed how the N-formylmaleamate deformylase Nfo and the maleamate amidase Ami, two pivotal amide hydrolases in the nicotine catabolic pathway of Pseudomonas putida S16, specifically recognize their respective substrates. In addition, comparison of the alpha-beta-alpha groups of amidases, which include Ami, pinpointed several subgroup-characteristic residues differentiating the two classes of amide substrates as containing either carboxylate groups or aromatic rings. Furthermore, this study reveals the molecular mechanism through which the specially tailored active sites of deformylases and amidases selectively recognize their unique substrates. Our work thus provides a thorough elucidation of the molecular mechanism through which amide hydrolases accomplish substrate-specific recognition in the microbial N-heterocycles biodenitrogenation pathway.
        
Title: A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida Jimenez JI, Juarez JF, Garcia JL, Diaz E Ref: Environ Microbiol, 13:1718, 2011 : PubMed
The biochemistry of nicotinic acid (NA) degradation is known but the transcriptional control of the genes involved is still poorly studied. We report here the transcriptional regulatory circuit of the nic genes responsible for the aerobic degradation of NA in Pseudomonas putida KT2440. The three NA-inducible catabolic operons, i.e. nicAB, encoding the upper pathway that converts NA into 6-hydroxynicotinic acid (6HNA), and the nicCDEFTP and nicXR operons, responsible for channelling 6HNA to the central metabolism, are driven by the Pa, Pc and Px promoters respectively. The nicR regulatory gene encodes a MarR-like protein that represses the activity of the divergent Pc and Px promoters being 6HNA the inducer molecule. A new gene, nicS, that is associated to the nicAB genes in the genomes of different gamma- and beta-Proteobacteria, encodes a TetR-like regulator that represses the activity of Pa in the absence of the NA/6HNA inducers. The NA regulatory circuit in P. putida has evolved an additional repression loop based on the NicR-dependent cross regulation of the nicS gene, thus assuring a tight transcriptional control of the catabolic genes that may prevent depletion of this vitamin B3 when needed for the synthesis of essential cofactors.
The aerobic catabolism of nicotinic acid (NA) is considered a model system for degradation of N-heterocyclic aromatic compounds, some of which are major environmental pollutants; however, the complete set of genes as well as the structural-functional relationships of most of the enzymes involved in this process are still unknown. We have characterized a gene cluster (nic genes) from Pseudomonas putida KT2440 responsible for the aerobic NA degradation in this bacterium and when expressed in heterologous hosts. The biochemistry of the NA degradation through the formation of 2,5-dihydroxypyridine and maleamic acid has been revisited, and some gene products become the prototype of new types of enzymes with unprecedented molecular architectures. Thus, the initial hydroxylation of NA is catalyzed by a two-component hydroxylase (NicAB) that constitutes the first member of the xanthine dehydrogenase family whose electron transport chain to molecular oxygen includes a cytochrome c domain. The Fe(2+)-dependent dioxygenase (NicX) converts 2,5-dihydroxypyridine into N-formylmaleamic acid, and it becomes the founding member of a new family of extradiol ring-cleavage dioxygenases. Further conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD protein, the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. This work allows exploration of the existence of orthologous gene clusters in saprophytic bacteria and some pathogens, where they might stimulate studies on their role in virulence, and it provides a framework to develop new biotechnological processes for detoxification/biotransformation of N-heterocyclic aromatic compounds.
        
2 lessTitle: Structural insights into the specific recognition of N-heterocycle biodenitrogenation-derived substrates by microbial amide hydrolases Wu G, Chen D, Tang H, Ren Y, Chen Q, Lv Y, Zhang Z, Zhao YL, Yao Y, Xu P Ref: Molecular Microbiology, 91:1009, 2014 : PubMed
N-heterocyclic compounds from industrial wastes, including nicotine, are environmental pollutants or toxicants responsible for a variety of health problems. Microbial biodegradation is an attractive strategy for the removal of N-heterocyclic pollutants, during which carbon-nitrogen bonds in N-heterocycles are converted to amide bonds and subsequently severed by amide hydrolases. Previous studies have failed to clarify the molecular mechanism through which amide hydrolases selectively recognize diverse amide substrates and complete the biodenitrogenation process. In this study, structural, computational and enzymatic analyses showed how the N-formylmaleamate deformylase Nfo and the maleamate amidase Ami, two pivotal amide hydrolases in the nicotine catabolic pathway of Pseudomonas putida S16, specifically recognize their respective substrates. In addition, comparison of the alpha-beta-alpha groups of amidases, which include Ami, pinpointed several subgroup-characteristic residues differentiating the two classes of amide substrates as containing either carboxylate groups or aromatic rings. Furthermore, this study reveals the molecular mechanism through which the specially tailored active sites of deformylases and amidases selectively recognize their unique substrates. Our work thus provides a thorough elucidation of the molecular mechanism through which amide hydrolases accomplish substrate-specific recognition in the microbial N-heterocycles biodenitrogenation pathway.
        
Title: Iron(II)-dependent dioxygenase and N-formylamide deformylase catalyze the reactions from 5-hydroxy-2-pyridone to maleamate Yao Y, Tang H, Ren H, Yu H, Wang L, Zhang W, Behrman EJ, Xu P Ref: Sci Rep, 3:3235, 2013 : PubMed
5-Hydroxy-2-pyridone (2,5-DHP) is a central metabolic intermediate in catabolism of many pyridine derivatives, and has been suggested as a potential carcinogen. 2,5-DHP is frequently transformed to N-formylmaleamic acid (NFM) by a 2,5-DHP dioxygenase. Three hypotheses were formerly discussed for conversion of 2,5-DHP to maleamate. Based on enzymatic reactions of dioxygenase (Hpo) and N-formylamide deformylase (Nfo), we demonstrated that the dioxygenase does not catalyze the hydrolysis of NFM but rather that this activity is brought about by a separate deformylase. We report that the deformylase acts both on NFM and its trans-isomer, N-formylfumaramic acid (NFF), but the catalytic efficiency of Nfo for NFM is about 1,400 times greater than that for NFF. In addition, we uncover catalytic and structural characteristics of the new family that the Hpo belongs to, and support a potential 2-His-1-carboxylate motif (HX52HXD) by three-dimensional modeling and site-directed mutagenesis. This study provides a better understanding of 2,5-DHP catabolism.
        
Title: Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation Tang H, Yao Y, Wang L, Yu H, Ren Y, Wu G, Xu P Ref: Sci Rep, 2:377, 2012 : PubMed
Nicotine is an important chemical compound in nature that has been regarded as an environmental toxicant causing various preventable diseases. Several bacterial species are adapted to decompose this heterocyclic compound, including Pseudomonas and Arthrobacter. Pseudomonas putida S16 is a bacterium that degrades nicotine through the pyrrolidine pathway, similar to that present in animals. The corresponding late steps of the nicotine degradation pathway in P. putida S16 was first proposed and demonstrated to be from 2,5-dihydroxy-pyridine through the intermediates N-formylmaleamic acid, maleamic acid, maleic acid, and fumaric acid. Genomics of strain S16 revealed that genes located in the largest genome island play a major role in nicotine degradation and may originate from other strains, as suggested by the constructed phylogenetic tree and the results of comparative genomic analysis. The deletion of gene hpo showed that this gene is essential for nicotine degradation. This study defines the mechanism of nicotine degradation.
        
Title: A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida Jimenez JI, Juarez JF, Garcia JL, Diaz E Ref: Environ Microbiol, 13:1718, 2011 : PubMed
The biochemistry of nicotinic acid (NA) degradation is known but the transcriptional control of the genes involved is still poorly studied. We report here the transcriptional regulatory circuit of the nic genes responsible for the aerobic degradation of NA in Pseudomonas putida KT2440. The three NA-inducible catabolic operons, i.e. nicAB, encoding the upper pathway that converts NA into 6-hydroxynicotinic acid (6HNA), and the nicCDEFTP and nicXR operons, responsible for channelling 6HNA to the central metabolism, are driven by the Pa, Pc and Px promoters respectively. The nicR regulatory gene encodes a MarR-like protein that represses the activity of the divergent Pc and Px promoters being 6HNA the inducer molecule. A new gene, nicS, that is associated to the nicAB genes in the genomes of different gamma- and beta-Proteobacteria, encodes a TetR-like regulator that represses the activity of Pa in the absence of the NA/6HNA inducers. The NA regulatory circuit in P. putida has evolved an additional repression loop based on the NicR-dependent cross regulation of the nicS gene, thus assuring a tight transcriptional control of the catabolic genes that may prevent depletion of this vitamin B3 when needed for the synthesis of essential cofactors.
The aerobic catabolism of nicotinic acid (NA) is considered a model system for degradation of N-heterocyclic aromatic compounds, some of which are major environmental pollutants; however, the complete set of genes as well as the structural-functional relationships of most of the enzymes involved in this process are still unknown. We have characterized a gene cluster (nic genes) from Pseudomonas putida KT2440 responsible for the aerobic NA degradation in this bacterium and when expressed in heterologous hosts. The biochemistry of the NA degradation through the formation of 2,5-dihydroxypyridine and maleamic acid has been revisited, and some gene products become the prototype of new types of enzymes with unprecedented molecular architectures. Thus, the initial hydroxylation of NA is catalyzed by a two-component hydroxylase (NicAB) that constitutes the first member of the xanthine dehydrogenase family whose electron transport chain to molecular oxygen includes a cytochrome c domain. The Fe(2+)-dependent dioxygenase (NicX) converts 2,5-dihydroxypyridine into N-formylmaleamic acid, and it becomes the founding member of a new family of extradiol ring-cleavage dioxygenases. Further conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD protein, the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. This work allows exploration of the existence of orthologous gene clusters in saprophytic bacteria and some pathogens, where they might stimulate studies on their role in virulence, and it provides a framework to develop new biotechnological processes for detoxification/biotransformation of N-heterocyclic aromatic compounds.