A new and particularly mild method for the formation of phosphorus-sulfur bonds has been achieved through base-catalyzed addition of thiocyanate to the corresponding H-phosphine oxide, phosphinate, or phosphonate. This reaction procedure offers many advantages: the use as starting material of a stable and not oxygen-sensitive phosphorus(v) species, particularly mild and nonaqueous reaction conditions and workup (a pivotal point for these sensitive phosphonothioates), and, through optimized access to thiocyanates, a wider scope of substrates. This method has been applied to achieve the synthesis of substrate analogues for the study of antibody-catalyzed hydrolysis of acetylcholinesterase inhibitor PhX (11).
We report here our preliminary results on the use of catalytic antibodies as an approach to neutralizing organophosphorus chemical weapons. A first-generation hapten, methyl-alpha-hydroxyphosphinate Ha, was designed to mimic the approach of an incoming water molecule for the hydrolysis of exceedingly toxic methylphosphonothioate VX (1a). A moderate protective activity was first observed on polyclonal antibodies raised against Ha. The results were further confirmed by using a mAb PAR 15 raised against phenyl-alpha-hydroxyphosphinate Hb, which catalyzes the hydrolysis of PhX (1b), a less toxic phenylphosphonothioate analog of VX with a rate constant of 0.36 M(-1) x min(-1) at pH 7.4 and 25 degrees C, which corresponds to a catalytic proficiency of 14,400 M(-1) toward the rate constant for the uncatalyzed hydrolysis of 1b. This is a demonstration on the organophosphorus poisons themselves that mAbs can catalytically hydrolyze nerve agents, and a significant step toward the production of therapeutically active abzymes to treat poisoning by warfare agents.