Title : RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins - Abramow-Newerly_2006_Cell.Signal_18_579 |
Author(s) : Abramow-Newerly M , Roy AA , Nunn C , Chidiac P |
Ref : Cell Signal , 18 :579 , 2006 |
Abstract :
The intracellular regulator of G protein signalling (RGS) proteins were first identified as GTPase activating proteins (GAPs) for heterotrimeric G proteins, however, it was later found that they can also regulate G protein-effector interactions in other ways that are still not well understood. There is increasing evidence that some of the effects of RGS proteins occur due to their ability to interact with multiprotein signalling complexes. In this review, we will discuss recent evidence that supports the idea that RGS proteins can bind to proteins other than Galpha, such as G protein coupled receptors (GPCRs, e.g. muscarinic, dopaminergic, adrenergic, angiotensin, interleukin and opioid receptors) and effectors (e.g. adenylyl cyclase, GIRK channels, PDEgamma, PLC-beta and Ca(2+) channels). Furthermore, we will investigate novel RGS binding partners (e.g. GIPC, spinophilin, 14-3-3) that underlie the formation of signalling scaffolds or govern RGS protein availability and/or activity. |
PubMedSearch : Abramow-Newerly_2006_Cell.Signal_18_579 |
PubMedID: 16226429 |
Abramow-Newerly M, Roy AA, Nunn C, Chidiac P (2006)
RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins
Cell Signal
18 :579
Abramow-Newerly M, Roy AA, Nunn C, Chidiac P (2006)
Cell Signal
18 :579