Banovic_2010_Neuron_66_724

Reference

Title : Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions - Banovic_2010_Neuron_66_724
Author(s) : Banovic D , Khorramshahi O , Owald D , Wichmann C , Riedt T , Fouquet W , Tian R , Sigrist SJ , Aberle H
Ref : Neuron , 66 :724 , 2010
Abstract :

Precise apposition of presynaptic and postsynaptic domains is a fundamental property of all neuronal circuits. Experiments in vitro suggest that Neuroligins and Neurexins function as key regulatory proteins in this process. In a genetic screen, we recovered several mutant alleles of Drosophila neuroligin 1 (dnlg1) that cause a severe reduction in bouton numbers at neuromuscular junctions (NMJs). In accord with reduced synapse numbers, these NMJs show reduced synaptic transmission. Moreover, lack of postsynaptic DNlg1 leads to deficits in the accumulation of postsynaptic glutamate receptors, scaffold proteins, and subsynaptic membranes, while increased DNlg1 triggers ectopic postsynaptic differentiation via its cytoplasmic domain. DNlg1 forms discrete clusters adjacent to postsynaptic densities. Formation of these clusters depends on presynaptic Drosophila Neurexin (DNrx). However, DNrx binding is not an absolute requirement for DNlg1 function. Instead, other signaling components are likely involved in DNlg1 transsynaptic functions, with essential interactions organized by the DNlg1 extracellular domain but also by the cytoplasmic domain.

PubMedSearch : Banovic_2010_Neuron_66_724
PubMedID: 20547130
Gene_locus related to this paper: drome-dnlg1

Related information

Gene_locus drome-dnlg1

Citations formats

Banovic D, Khorramshahi O, Owald D, Wichmann C, Riedt T, Fouquet W, Tian R, Sigrist SJ, Aberle H (2010)
Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions
Neuron 66 :724

Banovic D, Khorramshahi O, Owald D, Wichmann C, Riedt T, Fouquet W, Tian R, Sigrist SJ, Aberle H (2010)
Neuron 66 :724