Bhattarai_2023_J.Am.Med.Inform.Assoc__

Reference

Title : Using artificial intelligence to learn optimal regimen plan for Alzheimer's disease - Bhattarai_2023_J.Am.Med.Inform.Assoc__
Author(s) : Bhattarai K , Rajaganapathy S , Das T , Kim Y , Chen Y , Dai Q , Li X , Jiang X , Zong N
Ref : J Am Med Inform Assoc , : , 2023
Abstract :

BACKGROUND: Alzheimer's disease (AD) is a progressive neurological disorder with no specific curative medications. Sophisticated clinical skills are crucial to optimize treatment regimens given the multiple coexisting comorbidities in the patient population. OBJECTIVE: Here, we propose a study to leverage reinforcement learning (RL) to learn the clinicians' decisions for AD patients based on the longitude data from electronic health records. METHODS: In this study, we selected 1736 patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We focused on the two most frequent concomitant diseases-depression, and hypertension, thus creating 5 data cohorts (ie, Whole Data, AD, AD-Hypertension, AD-Depression, and AD-Depression-Hypertension). We modeled the treatment learning into an RL problem by defining states, actions, and rewards. We built a regression model and decision tree to generate multiple states, used six combinations of medications (ie, cholinesterase inhibitors, memantine, memantine-cholinesterase inhibitors, hypertension drugs, supplements, or no drugs) as actions, and Mini-Mental State Exam (MMSE) scores as rewards. RESULTS: Given the proper dataset, the RL model can generate an optimal policy (regimen plan) that outperforms the clinician's treatment regimen. Optimal policies (ie, policy iteration and Q-learning) had lower rewards than the clinician's policy (mean -3.03 and -2.93 vs. -2.93, respectively) for smaller datasets but had higher rewards for larger datasets (mean -4.68 and -2.82 vs. -4.57, respectively). CONCLUSIONS: Our results highlight the potential of using RL to generate the optimal treatment based on the patients' longitude records. Our work can lead the path towards developing RL-based decision support systems that could help manage AD with comorbidities.

PubMedSearch : Bhattarai_2023_J.Am.Med.Inform.Assoc__
PubMedID: 37463858

Related information

Citations formats

Bhattarai K, Rajaganapathy S, Das T, Kim Y, Chen Y, Dai Q, Li X, Jiang X, Zong N (2023)
Using artificial intelligence to learn optimal regimen plan for Alzheimer's disease
J Am Med Inform Assoc :

Bhattarai K, Rajaganapathy S, Das T, Kim Y, Chen Y, Dai Q, Li X, Jiang X, Zong N (2023)
J Am Med Inform Assoc :