Buccafusco_2000_Brain.Res_852_76

Reference

Title : Prevention of precipitated withdrawal symptoms by activating central cholinergic systems during a dependence-producing schedule of morphine in rats - Buccafusco_2000_Brain.Res_852_76
Author(s) : Buccafusco JJ , Zhang LC , Shuster LC , Jonnala RR , Gattu M
Ref : Brain Research , 852 :76 , 2000
Abstract :

Previous studies in this and other laboratories have suggested an important role for central cholinergic neurons in the expression of morphine withdrawal symptoms. This study was designed to determine whether the symptoms of withdrawal could be mitigated by normalization of the effect of morphine on cholinergic neurons. Since this effect is generally inhibitory, we used centrally acting cholinergic agonists to augment central cholinergic tone during chronic morphine infusion. Rats were made dependent following the intra-arterial (i.a.) infusion of increasing concentrations (35-100 mg kg(-1) day(-1)) of morphine over 5 days. I.a. injection of 0.5 mg/kg of naloxone precipitated a profound withdrawal response that included a dramatic increase in mean arterial pressure (MAP) which was maintained over the 60-min observation period, a short duration increase in heart rate (HR), and characteristic opiate withdrawal symptoms. In separate groups of rats, non-toxic doses (50 and 250 microg/kg) of the acetylcholinesterase (AChE) inhibitor, diisopropylflurophosphate (DFP) were administered as single daily injections concomitant with the morphine infusion. DFP treated rats, exhibited significantly reduced expression of the naloxone-evoked pressor response. The apparent anti-withdrawal effect of DFP was not reproduced by the selective peripherally acting AChE inhibitor, echothiophate, although both compounds effectively reduced the expression of certain other withdrawal symptoms. The centrally acting muscarinic cholinergic receptor agonist, arecoline, resulted in an even more impressive suppression of withdrawal symptoms. While not all symptoms associated with morphine withdrawal are mediated via central cholinergic pathways, these results suggest that physical dependence on morphine can be suppressed to a significant degree by the augmentation of central cholinergic activity during morphine administration.

PubMedSearch : Buccafusco_2000_Brain.Res_852_76
PubMedID: 10661498

Related information

Citations formats

Buccafusco JJ, Zhang LC, Shuster LC, Jonnala RR, Gattu M (2000)
Prevention of precipitated withdrawal symptoms by activating central cholinergic systems during a dependence-producing schedule of morphine in rats
Brain Research 852 :76

Buccafusco JJ, Zhang LC, Shuster LC, Jonnala RR, Gattu M (2000)
Brain Research 852 :76