Carney_2019_Comp.Biochem.Physiol.B.Biochem.Mol.Biol__110321

Reference

Title : Oxidative stress and biomarker responses in the Atlantic halibut after long term exposure to elevated CO2 and a range of temperatures - Carney_2019_Comp.Biochem.Physiol.B.Biochem.Mol.Biol__110321
Author(s) : Carney Almroth B , Bresolin de Souza K , Jonsson E , Sturve J
Ref : Comparative Biochemistry & Physiology B Biochem Mol Biol , :110321 , 2019
Abstract :

CO2 emissions from human activities are increasing, resulting in greater rates of change in the oceans, exceeding any other event in geological and historical records over the past 300 million years. Oceans are warming and pH levels are decreasing. Marine organisms will need to respond to multiple stressors and the potential consequences of global change-related effects in fish needs to be investigated. Fish are affected by many biotic and abiotic environmental variables, including temperature and CO2 fluctuations, and it is therefore critical to investigate how these variables may affect physiological and biochemical processes. We investigated the effects of elevated CO2 levels (pH of 8.0, which served as a control, or 7.6, which is predicted for the year 2100) combined with exposure to different temperatures (5, 10, 12, 14, 16, and 18 degrees C) in the Atlantic halibut (Hippoglossus hippoglossus) during a three month experiment. Since regulation of reactive oxygen species (ROS) is crucial for physiological processes the focus was on the antioxidant defense system and we assessed the effects on catalytic activities of antioxidant enzymes (SOD, CAT, GR, GST, GPx). In addition we also analyzed effects on cholinesterase enzymes (AChE and BChE), and CYP1A enzyme activities (EROD). The treatments resulted in oxidative stress, and damage was evident in the form of protein carbonyls which were consistently higher in the elevated CO2-treated fish at all temperatures. Analyses of antioxidant enzymes did not show the same results, suggesting that the exposure to elevated CO2 increased ROS formation but not defences. The antioxidant defense system was insufficient, and the resulting oxidative damage could impact physiological function of the halibut on a cellular level.

PubMedSearch : Carney_2019_Comp.Biochem.Physiol.B.Biochem.Mol.Biol__110321
PubMedID: 31472240

Related information

Citations formats

Carney Almroth B, Bresolin de Souza K, Jonsson E, Sturve J (2019)
Oxidative stress and biomarker responses in the Atlantic halibut after long term exposure to elevated CO2 and a range of temperatures
Comparative Biochemistry & Physiology B Biochem Mol Biol :110321

Carney Almroth B, Bresolin de Souza K, Jonsson E, Sturve J (2019)
Comparative Biochemistry & Physiology B Biochem Mol Biol :110321