Carroll_1997_Brain.Res_753_47

Reference

Title : Evidence to suggest that extracellular acetate is accumulated by rat hippocampal cholinergic nerve terminals for acetylcholine formation and release - Carroll_1997_Brain.Res_753_47
Author(s) : Carroll PT
Ref : Brain Research , 753 :47 , 1997
Abstract :

It is well established that extracellular choline is transported into central cholinergic nerve terminals by 'high' and 'low' affinity processes to form the neurotransmitter acetylcholine (ACh). The intent of the present investigation was to ascertain whether extracellular acetate might also be transported into central cholinergic nerve terminals to form ACh. To test this possibility, rat hippocampal tissue was incubated with varying concentrations of extracellular [1-(14)C]acetate (0.1-100 microM) and the uptake of [1-(14)C]acetate and the amount of [14C]ACh formed by the tissue determined. The results indicated that the uptake of extracellular [1-(14)C]acetate was temperature-dependent and saturable having an apparent Michaelis constant (Km) of 22 microM. The formation of [14C]ACh in the tissue as a function of extracellular [1-(14)C]acetate appeared to occur by both 'high' and 'low' affinity processes with apparent Km values of 0.5 and 19.6 microM, respectively. In other experiments, three inhibitors (lithium, allicin and sodium) of acetyl CoA synthetase (EC 6.2.1.1 acetate: CoA ligase), the enzyme which converts acetate to acetyl CoA when ATP and CoA are present, inhibited [1-(14)C]acetate uptake and the amount of [14C]ACh formed from that [1-(14)C]acetate. Additionally, vesamicol, an inhibitor of ACh transport into synaptic vesicles, blocked the filling of a synaptic vesicle-enriched fraction of hippocampal tissue with newly synthesized [14C]ACh formed from extracellular [1-(14)C]acetate. High K+ depolarization of hippocampal tissue loaded with extracellular [1-(14)C]acetate not only increased the synthesis but also the release of [14C]ACh. These results suggest that extracellular acetate is recycled by rat hippocampal cholinergic nerve terminals for the formation and release of ACh. They also suggest that the enzyme acetyl CoA synthetase mediates extracellular acetate uptake into hippocampal cholinergic nerve terminals by metabolizing it to acetyl CoA and thereby creating a diffusion gradient for it to follow.

PubMedSearch : Carroll_1997_Brain.Res_753_47
PubMedID: 9125430

Related information

Citations formats

Carroll PT (1997)
Evidence to suggest that extracellular acetate is accumulated by rat hippocampal cholinergic nerve terminals for acetylcholine formation and release
Brain Research 753 :47

Carroll PT (1997)
Brain Research 753 :47