Title : Exploring the pH dependence of an improved PETase - Charlier_2024_Biophys.J_123_1542 |
Author(s) : Charlier C , Gavalda S , Grga J , Perrot L , Gabrielli V , Lohr F , Schorghuber J , Lichtenecker R , Arnal G , Marty A , Tournier V , Guy L |
Ref : Biophysical Journal , 123 :1542 , 2024 |
Abstract :
Enzymatic recycling of plastic and especially of polyethylene terephthalate (PET) has shown great potential to reduce its negative impact on our society. PET hydrolases (PETases) have been optimized using rational design and machine learning, but the mechanistic details of the PET depolymerization process remain unclear. Belonging to the carboxylic-ester hydrolase family with a canonical Ser-His-Asp catalytic triad, their observed alkaline pH optimum is generally thought to be related to the protonation state of the catalytic His. Here, we explore this aspect in the context of LCC(ICCG), an optimized PETase, derived from the Leaf-branch Compost Cutinase (LCC) enzyme. We use NMR to identify the dominant tautomeric structure of the six histidines. Five show surprisingly low pKa values below 4.0 while the catalytic H242 in the active enzyme displays a pKa value that varies from 4.9 to 4.7 when temperatures increase from 30 degreesC to 50 degreesC. Whereas the hydrolytic activity of the enzyme towards a soluble substrate can be modeled by the corresponding protonation/deprotonation curve, an important discrepancy is found when the substrate is the solid plastic. This opens the way to further mechanistic understanding of the PETase activity, and underscores the importance of studying the enzyme at the liquid/solid interface. |
PubMedSearch : Charlier_2024_Biophys.J_123_1542 |
PubMedID: 38664965 |
Gene_locus related to this paper: 9bact-g9by57 |
Substrate | BHET |
Gene_locus | 9bact-g9by57 |
Structure | 8OTA |
Charlier C, Gavalda S, Grga J, Perrot L, Gabrielli V, Lohr F, Schorghuber J, Lichtenecker R, Arnal G, Marty A, Tournier V, Guy L (2024)
Exploring the pH dependence of an improved PETase
Biophysical Journal
123 :1542
Charlier C, Gavalda S, Grga J, Perrot L, Gabrielli V, Lohr F, Schorghuber J, Lichtenecker R, Arnal G, Marty A, Tournier V, Guy L (2024)
Biophysical Journal
123 :1542