Chon_2007_J.Biol.Chem_282_33346

Reference

Title : Intestinal monoacylglycerol metabolism: developmental and nutritional regulation of monoacylglycerol lipase and monoacylglycerol acyltransferase - Chon_2007_J.Biol.Chem_282_33346
Author(s) : Chon SH , Zhou YX , Dixon JL , Storch J
Ref : Journal of Biological Chemistry , 282 :33346 , 2007
Abstract :

Intestinal monoacylglycerol (MG) metabolism is well known to involve its anabolic reesterification to triacylglycerol (TG). We recently provided evidence for enterocyte MG hydrolysis and demonstrated expression of the monoacylglycerol lipase (MGL) gene in human intestinal Caco-2 cells and rodent small intestinal mucosa. Despite the large quantities of MG derived from dietary TG, the regulation of MG metabolism in the intestine has not been previously explored. In the present studies, we examined the mRNA expression, protein expression, and activities of the two known MG-metabolizing enzymes, MGL and MGAT2, in C57BL/6 mouse small intestine, as well as liver and adipose tissues, during development and under nutritional modifications. Results demonstrate that MG metabolism undergoes tissue-specific changes during development. Marked induction of small intestinal MGAT2 protein expression and activity were found during suckling. Moreover, while substantial levels of MGL protein and activity were detected in adult intestine, its regulation during ontogeny was complex, suggesting post-transcriptional regulation of expression. In addition, during the suckling period MG hydrolytic activity is likely to derive from carboxyl ester lipase rather than MGL. In contrast to intestinal MGL, liver MGL mRNA, protein and activity all increased 5-10-fold during development, suggesting that transcriptional regulation is the primary mechanism for hepatic MGL expression. Three weeks of high fat feeding (40% kcal) significantly induced MGL expression and activity in small intestine relative to low fat feeding (10% kcal), but little change was observed upon starvation, suggesting a role for MGL in dietary lipid assimilation following a high fat intake.

PubMedSearch : Chon_2007_J.Biol.Chem_282_33346
PubMedID: 17848545

Related information

Citations formats

Chon SH, Zhou YX, Dixon JL, Storch J (2007)
Intestinal monoacylglycerol metabolism: developmental and nutritional regulation of monoacylglycerol lipase and monoacylglycerol acyltransferase
Journal of Biological Chemistry 282 :33346

Chon SH, Zhou YX, Dixon JL, Storch J (2007)
Journal of Biological Chemistry 282 :33346