Colovic_2013_Curr.Neuropharmacol_11_315

Reference

Title : Acetylcholinesterase inhibitors: pharmacology and toxicology - Colovic_2013_Curr.Neuropharmacol_11_315
Author(s) : Colovic MB , Krstic DZ , Lazarevic-Pasti TD , Bondzic AM , Vasic VM
Ref : Curr Neuropharmacol , 11 :315 , 2013
Abstract :

Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.

PubMedSearch : Colovic_2013_Curr.Neuropharmacol_11_315
PubMedID: 24179466

Related information

Inhibitor EA-4056    EA-3990    Diuron    Molinate

Citations formats

Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013)
Acetylcholinesterase inhibitors: pharmacology and toxicology
Curr Neuropharmacol 11 :315

Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013)
Curr Neuropharmacol 11 :315