Cui_2023_Chemosphere_318_137898

Reference

Title : Bioaccumulation, metabolism and toxicological effects of chiral insecticide malathion and its metabolites in zebrafish (Danio rerio) - Cui_2023_Chemosphere_318_137898
Author(s) : Cui J , Wei Y , Jiang J , Xiao S , Liu X , Zhou Z , Liu D , Wang P
Ref : Chemosphere , 318 :137898 , 2023
Abstract :

The bioaccumulation, metabolism, tissue-specific distribution and toxicity of the widely used organophosphorous pesticide malathion to zebrafish were investigated on an enantiomeric level for evaluating the environmental risks. The metabolites were also monitored and evaluated. Malathion was metabolized by zebrafish very fast with the half-life of 0.12 d and showed a middle accumulation capacity in zebrafish with bioaccumulation factor (BCF) of 12.9 after a 15-d exposure. Brain could enrich higher concentration of malathion than other tissues. The metabolites malaoxon, malathion/malaoxon monocarboxylic acid (DMA), malathion/malaoxon dicarboxylic acid (DCA), dimethylthiophosphate (DMTP) and dimethyldithiophosphate (DMDTP) were found, in which DMTP and DCA were in higher level, indicating the metabolism was mainly induced by carboxylesterase degradation. The accumulation of malathion and malaoxon was stereoselective in zebrafish tissues, exhibiting S-enantiomer preferentially enriched. The acute toxicity test showed rac-malathion was low toxic to zebrafish, which was 1.2 and 1.6 folds more toxic than S-malathion and R-malathion respectively. Malaoxon was highly toxic to zebrafish and approximately 32 times more toxic than malathion. The toxicity of other metabolites was lower than malathion. Malathion could cause an apparent developmental toxicity to zebrafish embryo, including bradycardia, hatchability reduction and deformity, and abnormal movement patterns in zebrafish larva. Chronic toxicity indicated that malathion and malaoxon induced oxidative damage and neurotoxicity in the liver, brain and gill of zebrafish, and malaoxon exhibited a relatively high injury to the zebrafish brain. The results can provide information for the comprehensive assessment of the potential risk of malathion to aquatic organisms and highlight the necessity of consideration of stereoselectivity and metabolites when systemically evaluating pesticides.

PubMedSearch : Cui_2023_Chemosphere_318_137898
PubMedID: 36702415

Related information

Citations formats

Cui J, Wei Y, Jiang J, Xiao S, Liu X, Zhou Z, Liu D, Wang P (2023)
Bioaccumulation, metabolism and toxicological effects of chiral insecticide malathion and its metabolites in zebrafish (Danio rerio)
Chemosphere 318 :137898

Cui J, Wei Y, Jiang J, Xiao S, Liu X, Zhou Z, Liu D, Wang P (2023)
Chemosphere 318 :137898