Title : Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease - Darreh-Shori_2013_Neurobiol.Aging_34_2465 |
Author(s) : Darreh-Shori T , Vijayaraghavan S , Aeinehband S , Piehl F , Lindblom RP , Nilsson B , Ekdahl KN , Langstrom B , Almkvist O , Nordberg A |
Ref : Neurobiology of Aging , 34 :2465 , 2013 |
Abstract :
Butyrylcholinesterase (BCHE) activity is associated with activated astrocytes in Alzheimer's disease brain. The BCHE-K variant exhibits 30%-60% reduced acetylcholine (ACh) hydrolyzing capacity. Considering the increasing evidence of an immune-regulatory role of ACh, we investigated if genetic heterogeneity in BCHE affects cerebrospinal fluid (CSF) biomarkers of inflammation and cholinoceptive glial function. Alzheimer's disease patients (n = 179) were BCHE-K-genotyped. Proteomic and enzymatic analyses were performed on CSF and/or plasma. BCHE genotype was linked with differential CSF levels of glial fibrillary acidic protein, S100B, interleukin-1beta, and tumor necrosis factor (TNF)-alpha. BCHE-K noncarriers displayed 100%-150% higher glial fibrillary acidic protein and 64%-110% higher S100B than BCHE-K carriers, who, in contrast, had 40%-80% higher interleukin-1beta and 21%-27% higher TNF-alpha compared with noncarriers. A high level of CSF BCHE enzymatic phenotype also significantly correlated with higher CSF levels of astroglial markers and several factors of the innate complement system, but lower levels of proinflammatory cytokines. These individuals also displayed beneficial paraclinical and clinical findings, such as high cerebral glucose utilization, low beta-amyloid load, and less severe progression of clinical symptoms. In vitro analysis on human astrocytes confirmed the involvement of a regulated BCHE status in the astroglial responses to TNF-alpha and ACh. Histochemical analysis in a rat model of nerve injury-induced neuroinflammation, showed focal assembly of astroglial cells in proximity of BCHE-immunolabeled sites. In conclusion, these results suggest that BCHE enzymatic activity plays an important role in regulating intrinsic inflammation and activity of cholinoceptive glial cells and that this might be of clinical relevance. The dissociation between astroglial markers and inflammatory cytokines indicates that a proper activation and maintenance of astroglial function is a beneficial response, rather than a disease-driving mechanism. Further studies are needed to explore the therapeutic potential of manipulating BCHE activity or astroglial functional status. |
PubMedSearch : Darreh-Shori_2013_Neurobiol.Aging_34_2465 |
PubMedID: 23759148 |
Darreh-Shori T, Vijayaraghavan S, Aeinehband S, Piehl F, Lindblom RP, Nilsson B, Ekdahl KN, Langstrom B, Almkvist O, Nordberg A (2013)
Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease
Neurobiology of Aging
34 :2465
Darreh-Shori T, Vijayaraghavan S, Aeinehband S, Piehl F, Lindblom RP, Nilsson B, Ekdahl KN, Langstrom B, Almkvist O, Nordberg A (2013)
Neurobiology of Aging
34 :2465