Debuissy_2016_Biomacromolecules_17_4054

Reference

Title : Enzymatic Synthesis of a Bio-Based Copolyester from Poly(butylene succinate) and Poly((R)-3-hydroxybutyrate): Study of Reaction Parameters on the Transesterification Rate - Debuissy_2016_Biomacromolecules_17_4054
Author(s) : Debuissy T , Pollet E , Averous L
Ref : Biomacromolecules , 17 :4054 , 2016
Abstract :

The enzyme-catalyzed synthesis of fully biobased poly(3-hydroxybutyrate-co-butylene succinate) (poly(HB-co-BS)) copolyesters is reported for the first time. Different Candida antarctica lipase B (CALB)-catalyzed copolyesters were produced in solution, via a one-step or a two-step process from 1,4-butanediol, diethyl succinate, and synthesized telechelic hydroxylated poly(3-hydroxybutyrate) oligomers (PHB-diol). The influence of the ester/hydroxyl functionality ratio, catalyst amount, PHB-diol oligomer chain length, hydroxybutyrate (HB) and butylene succinate (BS) contents, and the nature of the solvent were investigated. The two-step process allowed the synthesis of copolyesters of high molar masses (Mn up to 18000 g/mol), compared to the one-step process (Mn approximately 8000 g/mol), without thermal degradation. The highest molar masses were obtained with diphenyl ether as solvent, compared with dibenzyl ether or anisole. During the two-step process, the transesterification rate between the HB and BS segments (i) increased with increasing amount of catalyst and decreasing molar mass of the PHB-diol oligomer, (ii) decreased when anisole was used as the solvent, and (iii) was not influenced by the HB/BS ratio. Tendencies toward block or random macromolecular architectures were observed as a function of the reaction time, the PHB-diol oligomer chain length, and the chosen solvent. Immobilized CALB-catalyzed copolyesters were thermally stable up to 200 degrees C. The crystalline structure of the poly(HB-co-BS) copolyesters depended on the HB/BS ratio and the average sequence length of the segments. The crystalline content, Tm and Tc decreased with increasing HB content and the randomness of the copolymer structure.

PubMedSearch : Debuissy_2016_Biomacromolecules_17_4054
PubMedID: 27936726

Related information

Citations formats

Debuissy T, Pollet E, Averous L (2016)
Enzymatic Synthesis of a Bio-Based Copolyester from Poly(butylene succinate) and Poly((R)-3-hydroxybutyrate): Study of Reaction Parameters on the Transesterification Rate
Biomacromolecules 17 :4054

Debuissy T, Pollet E, Averous L (2016)
Biomacromolecules 17 :4054