Duan_2017_Biotechnol.Biofuels_10_223

Reference

Title : High-level expression and characterization of a novel cutinase from Malbranchea cinnamomea suitable for butyl butyrate production - Duan_2017_Biotechnol.Biofuels_10_223
Author(s) : Duan X , Liu Y , You X , Jiang Z , Yang S
Ref : Biotechnol Biofuels , 10 :223 , 2017
Abstract :

BACKGROUND: Butyl butyrate has been considered as a promising fuel source because it is a kind of natural ester which can be converted from renewable and sustainable lignocellulosic biomass. Compared with the conventional chemical methods for butyl butyrate production, the enzymatic approach has been demonstrated to be more attractive, mainly owing to the mild reaction conditions, high specificity, low energy consumption, and environmental friendliness. Cutinases play an important role in the butyl butyrate production process. However, the production level of cutinases is still relatively low. Thus, to identify novel cutinases suitable for butyl butyrate synthesis and enhance their yields is of great value in biofuel industry.
RESULTS: A novel cutinase gene (McCut) was cloned from a thermophilic fungus Malbranchea cinnamomea and expressed in Pichia pastoris. The highest cutinase activity of 12, 536 U/mL was achieved in 5-L fermentor, which is by far the highest production for a cutinase. McCut was optimally active at pH 8.0 and 45 degrees C. It exhibited excellent stability within the pH range of 3.0-10.5 and up to 75 degrees C. The cutinase displayed broad substrate specificity with the highest activity towards p-nitrophenyl butyrate and tributyrin. It was capable of hydrolyzing cutin, polycaprolactone, and poly(butylene succinate). Moreover, McCut efficiently synthesized butyl butyrate with a maximum esterification efficiency of 96.9% at 4 h. The overall structure of McCut was resolved as a typical alpha/beta-hydrolase fold. The structural differences between McCut and Aspergillus oryzae cutinase in groove and loop provide valuable information for redesign of McCut. These excellent features make it useful in biosynthesis and biodegradation fields.
CONCLUSIONS: A novel cutinase from M. cinnamomea was identified and characterized for the first time. High-level expression by P. pastoris is by far the highest for a cutinase. The enzyme exhibited excellent stability and high esterification efficiency for butyl butyrate production, which may make it a good candidate in biofuel and chemical industries.

PubMedSearch : Duan_2017_Biotechnol.Biofuels_10_223
PubMedID: 28932264
Gene_locus related to this paper: malci-a0a1s6yjf3

Related information

Substrate Butyl-butyrate
Gene_locus Butyl-butyrate    malci-a0a1s6yjf3
Structure Butyl-butyrate    malci-a0a1s6yjf3    5X88

Citations formats

Duan X, Liu Y, You X, Jiang Z, Yang S (2017)
High-level expression and characterization of a novel cutinase from Malbranchea cinnamomea suitable for butyl butyrate production
Biotechnol Biofuels 10 :223

Duan X, Liu Y, You X, Jiang Z, Yang S (2017)
Biotechnol Biofuels 10 :223