Title : Discovery of treatment for nerve agents targeting a new metabolic pathway - Glaros_2020_Arch.Toxicol_94_3249 |
Author(s) : Glaros T , Dhummakupt ES , Rizzo GM , McBride E , Carmany DO , Wright LKM , Forster JS , Renner JA , Moretz RW , Dorsey R , Marten MR , Huso W , Doan A , Dorsey CD , Phillips C , Benton B , Mach PM |
Ref : Archives of Toxicology , 94 :3249 , 2020 |
Abstract :
The inhibition of acetylcholinesterase is regarded as the primary toxic mechanism of action for chemical warfare agents. Recently, there have been numerous reports suggesting that metabolic processes could significantly contribute to toxicity. As such, we applied a multi-omics pipeline to generate a detailed cascade of molecular events temporally occurring in guinea pigs exposed to VX. Proteomic and metabolomic profiling resulted in the identification of several enzymes and metabolic precursors involved in glycolysis and the TCA cycle. All lines of experimental evidence indicated that there was a blockade of the TCA cycle at isocitrate dehydrogenase 2, which converts isocitrate to alpha-ketoglutarate. Using a primary beating cardiomyocyte cell model, we were able to determine that the supplementation of alpha-ketoglutarate subsequently rescued cells from the acute effects of VX poisoning. This study highlights the broad impacts that VX has and how understanding these mechanisms could result in new therapeutics such as alpha-ketoglutarate. |
PubMedSearch : Glaros_2020_Arch.Toxicol_94_3249 |
PubMedID: 32720192 |
Glaros T, Dhummakupt ES, Rizzo GM, McBride E, Carmany DO, Wright LKM, Forster JS, Renner JA, Moretz RW, Dorsey R, Marten MR, Huso W, Doan A, Dorsey CD, Phillips C, Benton B, Mach PM (2020)
Discovery of treatment for nerve agents targeting a new metabolic pathway
Archives of Toxicology
94 :3249
Glaros T, Dhummakupt ES, Rizzo GM, McBride E, Carmany DO, Wright LKM, Forster JS, Renner JA, Moretz RW, Dorsey R, Marten MR, Huso W, Doan A, Dorsey CD, Phillips C, Benton B, Mach PM (2020)
Archives of Toxicology
94 :3249