Glavan_2017_Comp.Biochem.Physiol.C.Toxicol.Pharmacol_205_8

Reference

Title : Different response of acetylcholinesterases in salt- and detergent-soluble fractions of honeybee haemolymph, head and thorax after exposure to diazinon - Glavan_2017_Comp.Biochem.Physiol.C.Toxicol.Pharmacol_205_8
Author(s) : Glavan G , Kos M , Bozic J , Drobne D , Sabotic J , Kokalj AJ
Ref : Comparative Biochemistry & Physiology C Toxicol Pharmacol , 205 :8 , 2017
Abstract :

Organophosphate pesticide diazinon is a specific inhibitor of acetylcholinesterase (AChE), which is a common neurotoxicity biomarker in environmental studies. In honeybees, AChE exists in two forms having different physiological roles, one existing as a soluble form and the other as membrane-bound. In most studies AChE activity has been analysed without paying considerable attention to different forms of AChE. In this study, we exposed honeybees Apis mellifera carnica for 10days to diazinon via oral exposure and analysed the total AChE activities in salt soluble (SS) and detergent soluble (DS) fractions. We assumed that SS fraction would preferentially contain the soluble AChE, but the DS fraction would contain only membrane AChE. On the contrary, our results showed that SS and DS fractions both contain soluble and membrane AChE and the latter has considerably higher activity. Despite this we obtained a differential response of AChE activity in SS and DS fractions when exposed to diazinon. The head/thorax AChE activity in DS fraction decreased, while the head/thorax AChE activity in SS fraction increased at sublethal concentrations. The AChE activity in honeybee hemolymph shown here for the first time is a salt soluble enzyme. Its activity remained unaltered after diazinon treatment. In conclusion, we provide evidence that varying results regarding AChE activity alterations upon stressor exposure are obtained when extracted through different procedures. In further environmental studies with honeybees this differential response of AChE activity should be given considerable attention because this affects the outcome of ecotoxicity study.

PubMedSearch : Glavan_2017_Comp.Biochem.Physiol.C.Toxicol.Pharmacol_205_8
PubMedID: 29258877

Related information

Citations formats

Glavan G, Kos M, Bozic J, Drobne D, Sabotic J, Kokalj AJ (2017)
Different response of acetylcholinesterases in salt- and detergent-soluble fractions of honeybee haemolymph, head and thorax after exposure to diazinon
Comparative Biochemistry & Physiology C Toxicol Pharmacol 205 :8

Glavan G, Kos M, Bozic J, Drobne D, Sabotic J, Kokalj AJ (2017)
Comparative Biochemistry & Physiology C Toxicol Pharmacol 205 :8