| Title : Lentiviral transduction facilitates RNA interference in the nematode parasite Nippostrongylus brasiliensis - Hagen_2021_PLoS.Pathog_17_e1009286 |
| Author(s) : Hagen J , Sarkies P , Selkirk ME |
| Ref : PLoS Pathog , 17 :e1009286 , 2021 |
|
Abstract :
Animal-parasitic nematodes have thus far been largely refractory to genetic manipulation, and methods employed to effect RNA interference (RNAi) have been ineffective or inconsistent in most cases. We describe here a new approach for genetic manipulation of Nippostrongylus brasiliensis, a widely used laboratory model of gastrointestinal nematode infection. N. brasiliensis was successfully transduced with Vesicular Stomatitis Virus glycoprotein G (VSV-G)-pseudotyped lentivirus. The virus was taken up via the nematode intestine, RNA reverse transcribed into proviral DNA, and transgene transcripts produced stably in infective larvae, which resulted in expression of the reporter protein mCherry. Improved transgene expression was achieved by incorporating the C. elegans hlh11 promoter and the tbb2 3-UTR into viral constructs. MicroRNA-adapted short hairpin RNAs delivered in this manner were processed correctly and resulted in partial knockdown of beta-tubulin isotype-1 (tbb-iso-1) and secreted acetylcholinesterase B (ache-B). The system was further refined by lentiviral delivery of double stranded RNAs, which acted as a trigger for RNAi following processing and generation of 22G-RNAs. Virus-encoded sequences were detectable in F1 eggs and third stage larvae, demonstrating that proviral DNA entered the germline and was heritable. Lentiviral transduction thus provides a new means for genetic manipulation of parasitic nematodes, including gene silencing and expression of exogenous genes. |
| PubMedSearch : Hagen_2021_PLoS.Pathog_17_e1009286 |
| PubMedID: 33497411 |
Hagen J, Sarkies P, Selkirk ME (2021)
Lentiviral transduction facilitates RNA interference in the nematode parasite Nippostrongylus brasiliensis
PLoS Pathog
17 :e1009286
Hagen J, Sarkies P, Selkirk ME (2021)
PLoS Pathog
17 :e1009286