Hussain_2023_Molecules_28_

Reference

Title : Design, Synthesis, In Vitro Biological Evaluation and In Silico Molecular Docking Study of Benzimidazole-Based Oxazole Analogues: A Promising Acetylcholinesterase and Butyrylcholinesterase Inhibitors - Hussain_2023_Molecules_28_
Author(s) : Hussain R , Rahim F , Ullah H , Khan S , Sarfraz M , Iqbal R , Suleman F , Al-Sadoon MK
Ref : Molecules , 28 : , 2023
Abstract : Alzheimer's disease (AD) is a degenerative neurological condition that severely affects the elderly and is clinically recognised by a decrease in cognition and memory. The treatment of this disease has drawn considerable attention and sparked increased interest among the researchers in this field as a result of a number of factors, including an increase in the population of patients over time, a significant decline in patient quality of life, and the high cost of treatment and care. The current work was carried out for the synthesis of benzimidazole-oxazole hybrid derivatives as efficient Alzheimer's inhibitors and as a springboard for investigating novel anti-chemical Alzheimer's prototypes. The inhibition profiles of each synthesised analogue against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were assessed. All the synthesized benzimidazole-based oxazole analogues displayed a diverse spectrum of inhibitory potentials against targeted AChE and BuChE enzymes when compared to the reference drug donepezil (IC(50) = 2.16 +/- 0.12 M and 4.50 +/- 0.11 microM, respectively). The most active AChE and BuChE analogues were discovered to be analogues 9 and 14, with IC(50) values of 0.10 +/- 0.050 and 0.20 +/- 0.050 microM (against AChE) and 0.20 +/- 0.050 and 0.30 +/- 0.050 microM (against BuChE), respectively. The nature, number, position, and electron-donating and -withdrawing effects on the phenyl ring were taken into consideration when analysing the structure-activity relationship (SAR). Molecular docking studies were also carried out on the active analogues to find out how amino acids bind to the active sites of the AChE and BuChE enzymes that were being studied.
ESTHER : Hussain_2023_Molecules_28_
PubMedSearch : Hussain_2023_Molecules_28_
PubMedID: 37894494

Related information

Citations formats

Hussain R, Rahim F, Ullah H, Khan S, Sarfraz M, Iqbal R, Suleman F, Al-Sadoon MK (2023)
Design, Synthesis, In Vitro Biological Evaluation and In Silico Molecular Docking Study of Benzimidazole-Based Oxazole Analogues: A Promising Acetylcholinesterase and Butyrylcholinesterase Inhibitors
Molecules 28 :

Hussain R, Rahim F, Ullah H, Khan S, Sarfraz M, Iqbal R, Suleman F, Al-Sadoon MK (2023)
Molecules 28 :